Abstract:
A display panel and manufacturing method thereof, and a display device and health monitoring method thereof. The display panel includes a base substrate and a sonic sensor disposed on the base substrate. The sonic sensor is configured to monitor a sonic wave.
Abstract:
A multi-facet display device. The multi-facet display device comprises: a first display panel with a U-shaped structure and a second display panel with a planar structure. The first display panel comprises a display region with a planar structure, and two opposed side surfaces each connected with the display region via an arc surface. The two side surfaces of the first display panel are bonded with the two side edges of the second display panel to form a closed structure having an outer surface as a display surface of the multi-facet display device. Compared with a multi-facet display device composed of multiple planar display panels, the multi-facet display device according to present invention can improve image continuity across respective display directions.
Abstract:
The present invention provides a functional material, its preparation method, an alignment material and a liquid crystal substrate, which belong to the display technical field and can solve the problem that current liquid crystal display devices will produce pollution. The functional material of the present invention comprises an inorganic powder whose surface has a modified layer, wherein the inorganic powder comprises any one or more of aluminum oxide, magnesium oxide, zinc oxide, zirconium oxide, silicon dioxide, titanium dioxide, boron oxide, diiron trioxide, calcium oxide, potassium oxide, sodium oxide and lithium oxide; the modified layer is generated via cyclization by dehydrating the reaction product of a dianhydride and a diamine. The alignment material of the present invention comprises the above functional material. The liquid crystal display substrate of the present invention comprises an alignment layer made from the above alignment material.
Abstract:
The present disclosure relates to a flexible electrode and a method for manufacturing the same, an electronic skin and a flexible display device, the conductive polymer is solution treated by the ionic liquid, the nano-metal material is added to the solution treated conductive polymer to form the dispersed liquid of the conductive polymer containing the nano-metal material, the dispersed liquid is transferred to the substrate for curing to obtain the flexible electrode. The flexible electrode makes use of the flexible property of the conductive polymer such that the formed flexible electrode has good ductility and resilience. And the nano-metal material is dispersed in the conductive polymer such that the nano-metal material remedies the defect of low conductive property of the conductive polymeric material, and the flexible electrode has good conductivity.
Abstract:
A polarizer, a manufacturing method thereof and a display device are provided. The method includes forming an alignment layer on a carrier substrate and forming grooves on the alignment layer; providing liquid metal in the grooves, in which the liquid metal includes a plurality of liquid metal structures; applying an electric field parallel to the lengthwise direction x of the groove to the liquid metal to allow each liquid metal structure to be stretched along the lengthwise direction x of the groove to form a rod-like structure and the major-axis direction of each liquid metal structure is parallel to the lengthwise direction x of the groove; obtaining the liquid metal by curing the liquid metal; and stripping off the polarizer from the carrier substrate.
Abstract:
A display panel according to the present invention includes a first substrate and a second substrate which are arranged opposite to each other, and an outer surface of the second substrate includes a display region and a border region surrounding the display region. Wherein, the display panel further includes a plurality of light guides provided on the outer surface of the second substrate, and the light guides include first light guides, which are provided at edges of the display region so as to guide light emitted from the edges of the display region towards an upside of at least a part of the border region. Since the first light guides guide light emitted from the edges of the display region towards an upside of at least a part of the border region, display with a narrow border or even display without a border can be achieved.
Abstract:
The present disclosure provides a liquid crystal lens including a liquid crystal cell including a first substrate, a second substrate and a liquid crystal layer arranged between the first and second substrate. The first substrate includes a first base plate, a plurality of transistors arranged on the first base plate, a first electrode electrically connected to one electrode of each of the transistors, and a first polarizer arranged at a side of the first base plate away from the liquid crystal layer. The second substrate includes a second base plate, and a second polarizer arranged at a side of the second base plate away from the liquid crystal layer. The liquid crystal lens further includes a second electrode arranged on the first or second base plate. The first and second base plates are opaque, and each includes a plurality of small apertures which are provided in a one-to-one correspondence manner.
Abstract:
This disclosure provides an OLED display apparatus and the production method thereof, for decreasing the microcavity effect and improving the intensity of the light emitted by the OLED display apparatus. The OLED display apparatus comprises: an array substrate and an OLED device which is provided on the array substrate and comprises an anode, an organic light-emitting layer and a cathode in this order along the direction away from the array substrate, and further comprises: a refractive layer positioned between the array substrate and the anode, wherein the refractive index of the refractive layer is greater than that of the anode. In the above-mentioned OLED display apparatus, by providing a refractive layer, the refractive index of which is greater than that of an anode in an OLED device, the occurrence of total reflection phenomenon when light is irradiated onto an array substrate is reduced and thereby the microcavity effect is reduced, and it is allowed that the light is refracted from the surface of the array substrate as much as possible and the light-emitting intensity of the OLED display apparatus is improved.
Abstract:
The present invention provides a functional material, its preparation method, a three-dimensional display raster and a display device, which belongs to the display technical field and can solve the pollution problem in current three-dimensional display devices. The functional material includes an inorganic mixed powder with a modified layer, the inorganic mixed powder comprising boron oxide, sodium oxide, lithium oxide, zirconium oxide, aluminum oxide, zinc oxide, titanium oxide, silicon dioxide, calcium oxide, silver complexes, silver phosphate, silver nitrate, tourmaline, silver thiosulfate, carbon nanotubes, aluminum sulfate, manganese, manganese oxide, iron, iron oxide, cobalt, cobalt oxide, nickel, nickel oxide, chromium, chromium oxide, copper, copper oxide, magnesium oxide, boron carbide, silicon carbide, titanium carbide, zirconium carbide, tantalum carbide, molybdenum carbide, boron nitride, chromium nitride, titanium nitride, zirconium nitride, aluminum nitride, chromium boride, Cr3B4, titanium boride, zirconium boride, tungsten disilicide, titanium disilicide and the like; the modified layer being generated by a reaction of a dianhydride and a diamine.
Abstract translation:本发明提供属于显示技术领域的功能材料,其制备方法,三维显示光栅和显示装置,可以解决当前三维显示装置中的污染问题。 功能材料包括具有改性层的无机混合粉末,所述无机混合粉末包含氧化硼,氧化钠,氧化锂,氧化锆,氧化铝,氧化锌,氧化钛,二氧化硅,氧化钙,银络合物,磷酸银 ,硝酸银,电气石,硫代硫酸银,碳纳米管,硫酸铝,锰,氧化锰,铁,氧化铁,钴,氧化钴,镍,氧化镍,铬,氧化铬,铜,氧化铜,氧化镁, ,碳化硅,碳化钛,碳化锆,碳化钽,碳化钼,氮化硼,氮化铬,氮化钛,氮化锆,氮化铝,硼化铬,Cr 3 B 4,硼化钛,硼化锆,二硅化钨,二硅化钛等 ; 所述改性层由二酐与二胺的反应产生。
Abstract:
The present invention discloses an electrode structure, a method of manufacturing an electrode structure, a display substrate and a display device. The method of manufacturing an electrode structure includes: forming a layer of carbon nanotube film on a substrate; performing a doping process in the layer of carbon nanotube film by using a modifier material, and performing a patterning process on the doped layer of carbon nanotube film so as to form a pattern including first electrode; or performing a patterning process on the layer of carbon nanotube film so as to form a patterns including carbon nanotube electrodes, and performing a doping process in the pattern of the carbon nanotube electrodes so as to form a pattern including first electrodes; as such, the carbon nanotubes material is doped with the modifier material, such that the formed first electrode has a lower square resistance value, which may meet the conductivity requirement of the flexible electrode of the flexible display.