Abstract:
A field effect transistor (FET) is formed on a silicon substrate, with a nitride gate insulator layer being deposited on the substrate and an oxide gate insulator layer being deposited on the nitride layer to insulate a gate electrode from source and drain regions in the substrate. The gate material is then removed to establish a gate void, and spacers are deposited on the sides of the void such that only a portion of the oxide layer is covered by the spacers. Then, the unshielded portion of the oxide layer is removed, thus establishing a step between the oxide and nitride layers that overlays the source and drain extensions under the gate void to reduce subsequent capacitive coupling and charge carrier tunneling between the gate and the extensions. The spacers are removed and the gate void is refilled with gate electrode material.
Abstract:
A silicon-on-insulator (SOI) transistor. The SOI transistor having a source and a drain having a body disposed therebetween, the source being implanted with germanium to form an area of silicon-germanium adjacent a source/body junction in a lower portion of the source, the area of silicon-germanium in the source forming a hetero junction along a lower portion of the source/body junction.
Abstract:
A method of forming a semiconductor-on-insulator (SOI) wafer. The method includes the steps of providing a first wafer, the first wafer having a silicon substrate and an oxide layer disposed thereon; providing a second wafer, the second wafer having a silicon substrate, the substrate of the second wafer having a silicon-germanium layer disposed thereon, a silicon layer disposed on the silicon-germanium layer and an oxide layer disposed on the silicon layer; wafer bonding the first and second wafers; and removing an undesired portion of the substrate from the second wafer to form an upper silicon layer. The resulting SOI wafer structure is also disclosed.
Abstract:
The inventive method provides improved semiconductor devices, such as MOSFET's with raised source/drain extensions on a substrate with isolation trenches etched into the surface of the substrate. The inventive method provides thin first dielectric spacers on the side of a gate and gate oxide and extend from the top of the gate to the surface of the substrate. Raised source/drain extensions are placed on the surface of a substrate, which extend from the first dielectric spacers to the isolation trenches. Thicker second dielectric spacers are placed adjacent to the first dielectric spacers and extend from the top of the first dielectric spacers to the raised source/drain extensions. Raised source/drain regions are placed on the raised source/drain extensions, and extend from the isolation trenches to the second dielectric spacers. The inventive semiconductor devices provide for very shallow source drain extensions which results in a reduced short channel effect.
Abstract:
A double gate metal-oxide semiconductor field-effect transistor (MOSFET) includes a fin, a first gate and a second gate. The first gate is formed on top of the fin. The second gate surrounds the fin and the first gate. In another implementation, a triple gate MOSFET includes a fin, a first gate, a second gate, and a third gate. The first gate is formed on top of the fin. The second gate is formed adjacent the fin. The third gate is formed adjacent the fin and opposite the second gate.
Abstract:
A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.
Abstract:
A semiconductor device includes a fin and a layer formed on at least a portion of the fin. The fin includes a first crystalline material. The layer includes a second crystalline material, where the first crystalline material has a larger lattice constant than the second crystalline material to induce tensile strain within the layer.
Abstract:
A method of forming multiple fins in a semiconductor device includes forming a structure having an upper surface and side surfaces on the semiconductor device. The semiconductor device includes a conductive layer located below the structure. The method also includes forming spacers adjacent the structure and selectively etching the spacers and the conductive layer to form the fins. The fins may be used in a FinFET device.
Abstract:
A method forming a tri-gate fin field effect transistor includes forming an oxide layer over a silicon-on-insulator wafer comprising a silicon layer, and etching the silicon and oxide layers using a rectangular mask to form a mesa. The method further includes etching a portion of the mesa using a second mask to form a fin, forming a gate dielectric layer over the fin, and forming a tri-gate over the fin and the gate dielectric layer.
Abstract:
A method of forming fins for a double-gate fin field effect transistor (FinFET) includes forming a second layer of semi-conducting material over a first layer of semi-conducting material and forming double caps in the second layer of semi-conducting material. The method further includes forming spacers adjacent sides of each of the double caps and forming double fins in the first semi-conducting material beneath the double caps. The method also includes thinning the double fins to produce narrow double fins.