摘要:
In an interconnect structure of an integrated circuit, a diffusion barrier film in a damascene structure is formed of a film having the composition TaNx, where x is greater than 1.2 and with a thickness of 0.5 to 5 nm.
摘要翻译:在集成电路的互连结构中,镶嵌结构中的扩散阻挡膜由具有组成TaN x x的膜形成,其中x大于1.2,厚度为0.5至5nm 。
摘要:
The present invention provides a method for forming an interconnect to a cobalt or nickel silicide having a TiN diffusion barrier. The inventive method comprises providing an initial structure having vias to exposed silicide regions positioned on a substrate; annealing the initial structure in a nitrogen-containing ambient, wherein a nitrogen passivation layer is formed atop the exposed silicide region; depositing Ti atop the nitrogen passivation layer; annealing the Ti in a nitrogen-containing ambient to form a TiN diffusion barrier and an amorphous Ti cobalt silicide between the TiN diffusion layer and the cobalt or nickel silicide and depositing an interconnect metal within the vias and atop the TiN diffusion barrier. The nitrogen passivation layer substantially restricts diffusion between the Ti and silicide layers minimizing the amorphous Ti cobalt silicide layer that forms. Therefore, the amorphous Ti cobalt or Ti nickel silicide is restricted to a thickness of less than about 3.0 nm.
摘要:
A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step. The method of the present invention provides a structure having a germano-silicide contact layer atop a Ge-containing substrate, wherein the germano-silicide contact layer contains more Si than the underlying Ge-containing substrate.
摘要:
An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
摘要:
A semiconductor device such as a complementary metal oxide semiconductor (CMOS) comprising at least one FET that comprises a gate electrode comprising a metal carbide and method of fabrication are provided. The CMOS comprises dual work function metal gate electrodes whereby the dual work functions are provided by a metal and a carbide of a metal.
摘要:
A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.
摘要:
A method of forming a dual self-aligned fully silicided gate in a CMOS device requiring only one lithography level, wherein the method comprises forming a first type semiconductor device having a first well region in a semiconductor substrate, first source/drain silicide areas in the first well region, and a first type gate isolated from the first source/drain silicide areas; forming a second type semiconductor device having a second well region in the semiconductor substrate, second source/drain silicide areas in the second well region, and a second type gate isolated from the second source/drain silicide areas; selectively forming a first metal layer over the second type semiconductor device; performing a first fully silicided (FUSI) gate formation on only the second type gate; depositing a second metal layer over the first and second type semiconductor devices; and performing a second FUSI gate formation on only the first type gate.
摘要:
An integrated circuit is provided including an FET gate structure formed on a substrate. This structure includes a gate dielectric on the substrate, and a metal nitride layer overlying the gate dielectric and in contact therewith. This metal nitride layer is characterized as MNx, where M is one of W, Re, Zr, and Hf, and x is in the range of about 0.7 to about 1.5. Preferably the layer is of WNx, and x is about 0.9. Varying the nitrogen concentration in the nitride layer permits integration of different FET characteristics on the same chip. In particular, varying x in the WNx layer permits adjustment of the threshold voltage in the different FETs. The polysilicon depletion effect is substantially reduced, and the gate structure can be made thermally stable up to about 1000° C.
摘要:
A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprising an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be AlN or AlOxNy. The high k dielectric can be HfO2, hafnium silicate or hafnium silicon oxynitride. The insulating interlayer can be removed from the nFET region by a wet etch including a HCl/H2O2 peroxide solution.
摘要翻译:一种形成CMOS结构的方法及其制造的器件,具有改进的阈值电压和平带电压稳定性。 本发明的方法包括提供具有nFET区和pFET区的半导体衬底的步骤; 在所述半导体衬底上形成包括在高k电介质顶上的绝缘夹层的电介质叠层; 从nFET区域去除绝缘中间层而不从pFET区域去除绝缘中间层; 以及在pFET区域中提供至少一个栅极堆叠以及在nFET区域中提供至少一个栅极堆叠。 绝缘中间层可以是AlN或AlO x N y Y。 高k电介质可以是HfO 2,硅酸铪或铪硅氮氧化物。 可以通过包含HCl / H 2 O 2 O 2过氧化物溶液的湿蚀刻从nFET区域去除绝缘中间层。
摘要:
A method for providing a low resistance non-agglomerated Ni monosilicide contact that is useful in semiconductor devices. Where the inventive method of fabricating a substantially non-agglomerated Ni alloy monosilicide comprises the steps of: forming a metal alloy layer over a portion of a Si-containing substrate, wherein said metal alloy layer comprises of Ni and one or multiple alloying additive(s), where said alloying additive is Ti, V, Ge, Cr, Zr, Nb, Mo, Hf, Ta, W, Re, Rh, Pd or Pt or mixtures thereof; annealing the metal alloy layer at a temperature to convert a portion of said metal alloy layer into a Ni alloy monosilicide layer; and removing remaining metal alloy layer not converted into Ni alloy monosilicide. The alloying additives are selected for phase stability and to retard agglomeration. The alloying additives most efficient in retarding agglomeration are most efficient in producing silicides with low sheet resistance.