Abstract:
A method of operating an electronic device manufacturing system is provided which includes the steps of receiving information with an interface, wherein the information relates to an abatement system, and shutting down a process tool and an abatement tool in response to the information.
Abstract:
A method for operating one or more electronic device manufacturing systems is provided, including the steps 1) performing a series of electronic device manufacturing process steps with a process tool, wherein the process tool produces effluent as a byproduct of performing the series of process steps; 2) abating the effluent with an abatement tool; 3) supplying an abatement resource to the abatement tool from a first abatement resource supply; 4) changing an abatement resource supply from the first abatement resource supply to a second abatement resource supply, wherein changing the abatement resource supply comprises: i) interrupting a flow of the abatement resource from the first abatement resource supply; and ii) beginning a flow of the abatement resource from the second abatement resource supply; and 5) continuing to perform the series of process steps with the process tool, while changing, and after changing, the abatement resource supply.
Abstract:
A method and system for retrofitting an integrated scrubber to provide maximum oxygen content in a controlled decomposition oxidation (CDO) abatement process. The system includes a thermal/wet integrated scrubber, and a compressed air supply for supplying air to an oxygen separation device that separates the air into a nitrogen-enriched component and an oxygen-enriched component. The oxygen separation device utilizes a ceramic oxide or polymeric material to separate from the supplied air an oxygen-enriched component for introduction into the integrated scrubber. The integrated scrubber is equipped with a mechanical scraping device for continuous or intermittent removal of combustion deposits formed during the controlled decomposition oxidation process.
Abstract:
An apparatus and method are provided for treating pollutants in a gaseous stream. The apparatus comprises tubular inlets for mixing a gas stream with other oxidative and inert gases for mixture within a reaction chamber. The reaction chamber is heated by heating elements and has orifices through which cool or heated air enters into the central reaction chamber. A process is also provided whereby additional gases are added to the gaseous stream preferably within the temperature range of 650 C-950 C which minimizes or alleviates the production of NOx.
Abstract:
The present invention is a fluid separation module having improved permeate flow characteristics and improved space/volume requirements. Such modules comprise a hollow fiber bundle, a first and optional second tubesheet, an optional casing, a feed inlet, a permeate outlet, and a non-permeate outlet. The module is coiled, curved or bent into a useful non-linear shape which reduces the space requirements for the module essentially without diminishing the effectiveness of the fluid separation. The feed fluid is introduced to the module either in a boreside or a shellside manner. Coil, french horn, spiral or U-shaped configuration or combinations thereof are useful.
Abstract:
Several advantages as to ease of cell fabrication, maximum cell size, fiber breakage, tubesheet tightness, resistance to tubesheet deformation in prolonged service, safety, etc., can be realized by using as the tubesheet in a hollow fiber type battery cell one which is elongated in shape, has a substantially smaller diameter than the fiber "bundle" depending from it and in which the fiber ends passing through it are closely packed.
Abstract:
A method for operating one or more electronic device manufacturing systems is provided, including the steps 1) performing a series of electronic device manufacturing process steps with a process tool, wherein the process tool produces effluent as a byproduct of performing the series of process steps; 2) abating the effluent with an abatement tool; 3) supplying an abatement resource to the abatement tool from a first abatement resource supply; 4) changing an abatement resource supply from the first abatement resource supply to a second abatement resource supply, wherein changing the abatement resource supply comprises: i) interrupting a flow of the abatement resource from the first abatement resource supply; and ii) beginning a flow of the abatement resource from the second abatement resource supply; and 5) continuing to perform the series of process steps with the process tool, while changing, and after changing, the abatement resource supply.
Abstract:
A flame sensor apparatus for use with a flame heated thermal abatement reactor is provided, including a flame sensor adapted to sense a flame within the thermal abatement reactor; and a shutter adapted to selectively block the transmission of radiation from the flame to the flame sensor.
Abstract:
Embodiments of an abatement apparatus are disclosed herein. In some embodiments, an abatement apparatus may include a scrubber configured to receive an effluent stream from a process chamber and further configured to remove first particles from the effluent stream; a scrubber conduit coupled to the scrubber to receive the effluent stream therefrom and configured to remove second particles from the effluent stream, the scrubber conduit having one or more inlets configured to provide a fluid to sufficiently wet an interior surface of the scrubber conduit to trap the second particles thereon and to wash the second particles therealong; and a central scrubber coupled to the scrubber via the scrubber conduit. In some embodiments, the scrubber conduit is downward sloping from the scrubber to the central scrubber. In some embodiments, a plurality of scrubbers may be coupled to the central scrubber via a plurality of scrubber conduits.
Abstract:
A thermal abatement system is provided, including: a thermal abatement reactor; an inlet in fluid communication with the reactor; a process chamber in fluid communication with the inlet; a first sheathing fluid source in fluid communication with the inlet; a first flow control device, adapted to regulate a flow of a first sheathing fluid from the first sheathing fluid source; and a controller, in signal communication with the first flow control device, adapted to regulate the sheathing fluid by operating the first flow control device; wherein the inlet is adapted to receive an effluent stream from the process chamber and the first sheathing fluid from the first sheathing fluid source, to sheathe the effluent stream with the first sheathing fluid to form a sheathed effluent stream, and to introduce the sheathed effluent stream into the reactor.