摘要:
Apparatus for molecular beam deposition sequentially on a plurality of substrates is described. The apparatus includes a growth chamber and an auxiliary (sample-exchange) chamber coupled by an air-lock. The substrates are carried by a rod which can be translated via a bellows mechanism between the two chambers. The auxiliary chamber includes a port which permits access to the samples so that the entire rod-bellows mechanism need not be removed in order to change samples. The auxiliary chamber also includes means for maintaining therein an inert atmosphere at a pressure in excess of atmospheric pressure especially when the port is open. The growth chamber includes a cylindrical liquid nitrogen (LN.sub.2) shroud which has an aperture in its wall to admit molecular beams to only a heated (growth) substrate. The unheated (idle) substrates are thus shaded from the beams. In addition, the shroud surrounds both the growth substrate and idle substrates in the growth chamber. This configuration of the shroud reduces the likelihood of contamination of idle substrates. In addition, the growth chamber includes means for selectively heating the growth substrate, the idle substrates remaining unheated so as to reduce the evaporation of high vapor pressure elements therefrom.Another aspect of the invention is the provision of uniquely designed pyrolytic BN effusion cells for generating the various molecular beams.
摘要:
Apparatus for molecular beam deposition sequentially on a plurality of substrates is described. The apparatus includes a growth chamber and an auxiliary (sample-exchange) chamber coupled by an air-lock. The substrates are carried by a rod which can be translated via a bellows mechanism between the two chambers. The auxiliary chamber includes a port which permits access to the samples so that the entire rod-bellows mechanism need not be removed in order to change samples. The auxiliary chamber also includes means for maintaining therein an inert atmosphere at a pressure in excess of atmospheric pressure especially when the port is open. The growth chamber includes a cylindrical LN.sub.2 shroud which has an aperture in its wall to admit molecular beams to only a heated (growth) substrate. The unheated (idle) substrates are thus shaded from the beams. In addition, the shroud surrounds both the growth substrate and idle substrates in the growth chamber. This configuration of the shroud reduces the likelihood of contamination of idle substrates. In addition, the growth chamber includes means for selectively heating the growth substrate, the idle substrates remaining unheated so as to reduce the evaporation of high vapor pressure elements therefrom.Another aspect of the invention is the provision of uniquely designed pyrolytic BN effusion cells for generating the various molecular beams.
摘要:
A laser having a binary stratified structure of alternating sections of graded-index, separate confinement heterostructure (GRINSCH) and semi-insulating semiconductor formed in the direction of light propagation. The active region of the laser includes at least two GRINSCH sections upon a substrate and at least three filler sections sandwiching the at least two GRINSCH sections in an alternating fashion. An analysis of the practical limit on the minimum threshold current and the packaging problems of a semiconductor laser based on the binary stratified structure is included.
摘要:
A multi-quantum well laser having a Ga.sub.0.47 In.sub.0.53 As/Al.sub.0.48 In.sub.0.52 As active region emitting at 1.55 .mu.m and well layers having a thickness less than 150 Angstroms.
摘要翻译:具有发射在1.55μm的Ga 0.47 In 0.53As / Al 0.48 In 0.52As有源区和厚度小于150埃的阱层的多量子阱激光器。
摘要:
A thin and highly doped Ga.sub.0.47 In.sub.0.53 As layer disposed on a Ga.sub.0.47 In.sub.0.53 As layer increases the barrier height and produces useful device characteristics. For example, the structure may be used as the gate electrode in an InGaAs field effect transistor.
摘要翻译:设置在Ga 0.47 In 0.53As层上的薄且高度掺杂的Ga 0.47 In 0.53 As层增加势垒高度并产生有用的器件特性。 例如,该结构可以用作InGaAs场效应晶体管中的栅电极。
摘要:
Surface recombination current in GaAs devices is reduced by means of a semi-insulating, oxygen, iron or chromium doped monocrystalline layer of AlGaAs grown by MBE. The AlGaAs layer is grown on a GaAs body and is then masked. Diffusion of suitable impurities through a window in the mask converts the exposed portions of the AlGaAs layer to low resistivity and modifies the conductivity of the underlying zone of the GaAs body. The peripheral portions of the AlGaAs layer, however, remain semi-insulating and are effective to reduce the surface recombination velocity - diffusion length product by more than an order of magnitude.
摘要:
A planar field effect transistor (FET) includes a plurality of spaced-apart, floating Schottky barrier, epitaxial metal gate electrodes which are embedded within a semiconductor body. A drain electrode and a gate control electrode are formed on one major surface of the body whereas a source electrode, typically grounded, is formed on an opposite major surface of the body. The FET channel extends vertically between the source and drain, and current flow therein is controlled by application of suitable gate voltage. Two modes of operation are possible: (1) the depletion regions of the control gates and the floating gates pinch off the channel so that with zero control gate voltage no current flows from source to drain; then, forward biasing the control gate opens the channel; and (2) the depletion regions of the control gates and the floating gates do not pinch off the channel, but reverse biasing the control gate produces pinch off. Specifically described is a GaAs FET in which the floating gate electrodes are Al epitaxial layers grown by molecular beam epitaxy.
摘要:
A vertical field effect transistor (10) includes a relatively wide bandgap, lowly doped active layer (18) epitaxially grown on, and substantially lattice matched to, an underlying semiconductor body portion (13). A mesa (20) of lower bandgap material is epitaxially grown on and substantially lattice matched to the active layer. A source electrode (22) is formed on a bottom major surface (34) of the semiconductor body portion, a drain electrode (24) is formed on the top of the mesa, and a pair of gate electrode stripes (26) are formed on the active layer adjacent both sides of the mesa. When voltage (V.sub.G), negative with respect to the drain, is applied to the gate electrodes, the depletion regions (28) thereunder extend laterally in the active layer until they intersect, thereby pinching off the flow of current in the channel extending from the drain and source electrodes. Also described is an embodiment in which spaced-apart, high impedance zones (30) underlie the active layer and the mesas, and the spaces between zones underlie the gate stripes.
摘要:
Heteroepitaxial growth of phosphorus-containing III/V semiconductor material (e.g., InGaAsP) on a non-planar surface of a different phosphorus-containing III/V semiconductor material (e.g., InP) is facilitated by heating the non-planar surface in a substantially evacuated chamber to a mass-transport temperature, and exposing the surface to a flux of at least phosphorus form a solid phosphorus source. This mass-transport step is followed by in situ growth of the desired semiconductor material, with at least an initial portion of the growth being done at a first growth temperature that is not greater than the mass transport temperature. Growth typically is completed at a second growth temperature higher than the first growth temperature. A significant aspect of the method is provision of the required fluxes (e.g., phosphorus, arsenic, indium, gallium) from solid sources, resulting in hydrogen-free mass transport and growth, which can be carried out at lower temperatures than is customary in the prior art. An exemplary and preferred application of the method is in grating formation and overgrowth in InP-based DFB lasers.