Abstract:
An embodiment method includes receiving service parameters for a service and locating logical network nodes for a service-specific data plane logical topology at respective physical network nodes among a plurality of physical network nodes according to the service parameters, a service-level topology, and a physical infrastructure of the plurality of physical network nodes. The method also includes defining connections among the logical network nodes according to the service parameters, the service-level topology, and the physical infrastructure, and defining respective connections for a plurality of UEs to at least one of the logical network nodes according to the service parameters, the service-level topology, and the physical infrastructure. The method further includes defining respective functionalities for the logical network nodes.
Abstract:
Embodiments are provided for a location-based network discovery and connection establishment, which take advantage of location/positioning technology of user equipment (UE) and resolve issues above of the blind search approaches. The location-based network discovery and connection establishment schemes use UE location information and a network access MAP to speed up network discovery, and remove the need for continuous search and measurement by the UE. The schemes also reduce the search space. A wireless network access map (MAP) is provided to the UE. The UE uses the MAP information with UE current location information to reduce the search space and speed up network discovery and radio connection establishment with the network. Network operators can use this network access MAP to control the network access and manage the network load distribution. The network access MAP can be customized for each UE.
Abstract:
System and method embodiments for mobility prediction in a wireless network enable the wireless network to determine the location of a wireless device with minimal transmissions from the wireless device. In an embodiment, the method includes negotiating with a mobile device to determine a mobility prediction algorithm and a condition upon which the mobile wireless device will report the actual location of the mobile device, training the mobility prediction algorithm using prior mobile wireless device location and timestamp information, determining a predicted location of the mobile device using the mobility prediction algorithm, and setting an predicted location for the mobile device at a time as the actual location for the mobile device at the time when failing to receive a location report from the mobile wireless device, wherein the mobile device transmits actual location information after the training period only if the condition is met.
Abstract:
Systems and methods are provided to improve data transmission efficiency over a network. The improvements are achieved by reducing the redundancy in the data representation. The data is divided into a plurality of data portions. The data portions are used to encode a plurality of compressed data portions, wherein the compressed data portions correspond to a subset of the data portions and comprise less redundant data than the subset of the data portions. The compressed data portions are also encoded in accordance with data in the remaining data portions. The compressed data portions are transmitted instead of the subset of the data portions with the remaining data portions according to a sequence of data portions. Each of the compressed data portions is transmitted upon receiving an acknowledgment (ACK) message that indicates successful transmission of a previous data portion or compressed data portion in the sequence of data portions.
Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.
Abstract:
Embodiments are provided for traffic scheduling based on user equipment (UE) in wireless networks. A location prediction-based network scheduler (NS) interfaces with a traffic engineering (TE) function to enable location-prediction-based routing for UE traffic. The NS obtains location prediction information for a UE for a next time window comprising a plurality of next time slots, and obtains available network resource prediction for the next time slots. The NS then determines, for each of the next time slots, a weight value as a priority parameter for forwarding data to the UE, in accordance with the location prediction information and the available network resource prediction. The result for the first time slot is then forwarded from the NS to the TE function, which optimizes, for the first time slot, the weight value with a route and data for forwarding the data to the UE.
Abstract:
Constraining resource provisioning by domain controllers based on resource requirements projected for remotely-originating inter-domain traffic can improve utilization efficiency and link reliability in multi-domain software defined network (SDN) architectures. A domain controller may be required to reserve a portion of inter-domain link capacity for transporting remotely-originating traffic. This may limit the inter-domain link capacity available for transporting locally-originating traffic in a manner that ensures remotely-originating traffic flows have equitable and/or adequate access to resources of inter-domain links. Alternatively, a domain controller may be required to maintain a minimum throughput rate for remotely-originating traffic, which may cause remotely-originating traffic to be prioritized over locally-originating traffic when necessary to maintain the minimum throughput rate. Provisioning constraints can be generated in a centralized or distributed fashion.
Abstract:
A software designed protocol (SDP) network node includes a receiver, and a processor operatively coupled to the receiver. The receiver receives instructions, and receives packets. The processor updates a configuration of the SDP network node in accordance with the received instructions, and processes the received packets.
Abstract:
An embodiment method includes selecting, by a network infrastructure manager, a first user equipment (UE) as a destination UE and selecting a second UE as a relay UE for the destination UE. The method further includes negotiating installation of a virtual range extender (vREX) UE on the destination UE, and negotiating installation of a vREX forwarding agent (FA) on the relay UE. The vREX FA is configured to act as a FA for the vREX UE.
Abstract:
System and method embodiments are provided for traffic engineering (TE) in software defined networking (SDN). The embodiments enable a complete end-to-end TE solution between a user equipment (UE) and a source/destination across a radio access network (RAN). In an embodiment, a method in a network component for TE in a SDN includes receiving TE information from a first core network component in a core network, a RAN component, wherein the RAN is communicably coupled to the core network, wherein the TE information includes a TE objective; and determining a TE decision between at least one UE and a second core network component in the core network according to the TE information and the TE objective, wherein the TE decision comprises information for at least one end-to-end path solution between the at least one UE and the second core network wherein the path traverses the core network and the RAN.