Abstract:
A vent assembly is disposed within an interior space of a vehicle for opening and closing fluid communication between the interior space and an exterior of the vehicle. The vent assembly includes a housing defining a plurality of openings and a plurality of vanes disposed in the openings. An actuator mechanism moves the vanes between an open position and a closed position, and includes a shaped memory alloy (SMA) member for actuating the vanes between the open and closed positions. The SMA member is activated when a hatch of the vehicle is opened to move the vanes into the open position and thereby open fluid communication between the interior space and the exterior to alleviate excessive air pressure buildup during closure of the hatch.
Abstract:
Aspects of the disclosure include a battery management system that actively limits the operational voltage of a cell to avoid a cell pressure surge in response to an indicator of battery cell degradation. An exemplary battery management system can include a memory, computer readable instructions, and one or more processors that perform operations that include: measuring a first cell pressure of a cell of the battery pack at a reference voltage and measuring a second cell pressure of the cell of the battery pack at the reference voltage. A moving average of cell pressure progression is determined from the first cell pressure and the second cell pressure. Responsive to the moving average of cell pressure progression exceeding a cell pressure progression threshold, the cell of the battery pack is identified as a degraded cell and an estimate of remaining cycles for the degraded cell is determined.
Abstract:
A variable current gate driver for a transistor includes a first current control device having a first controllable output current. The first current control device is electrically connected between a first bus and an activator of the transistor, and a second current control device having a second controllable output current. The second current control device is electrically connected between the activator of the transistor and a second bus. A controller is operatively connected to the first and second current control devices to control the first and second controllable output currents to control the first and second current control devices to control activation of the transistor via the activator. The controller is operative to control the first and second current control devices to control a slew rate of the transistor.
Abstract:
A system according to the principles of the present disclosure includes a switching period module and at least one of a valve lift control module and a start-stop control module. The switching period module determines a switching period that elapses as a valve lift actuator of an engine switches between a first valve lift position and a second valve lift position that is different than the first lift position. The switching period begins when a measured position of the valve lift actuator corresponds to the first lift position and the switching period ends when the measured position of the valve lift actuator corresponds to the second lift position. The valve lift control module controls the valve lift actuator based on the switching period. The start-stop control module determines whether to automatically stop the engine based on the switching period.
Abstract:
A method for detecting a clear path of travel for a vehicle utilizing analysis of a plurality of images generated by a camera device located upon the vehicle includes monitoring the images. The images are analyzed including determining a clear path upon which a potential road surface can be estimated from other portions of the images that do not indicate a potential road surface, and determining an image of a traffic infrastructure indication. The method further includes determining the content of the traffic infrastructure indication, modifying the clear path based upon the content of the traffic infrastructure indication, and utilizing the modified clear path in navigation of the vehicle.
Abstract:
A fuel control system of a vehicle includes an injection control module and a command module. The injection control module determines a first target amount of fuel for a combustion event of an engine. A command module selectively command the injection control module to provide two fuel injections when a torque request decreases. In response to the command, the injection control module: determines second and third target amounts of fuel based on the first target amount; provides a first fuel injection during the combustion event based on the second target amount; and provides a second fuel injection during a compression stroke of the combustion event based on the third target amount.
Abstract:
A ranking module determines N ranking values for N predetermined cylinder activation/deactivation sequences of an engine, respectively. N is an integer greater than or equal to two. A cylinder control module, based on the N ranking values, selects one of the N predetermined cylinder activation/deactivation sequences as a desired cylinder activation/deactivation sequence for cylinders of the engine. The cylinder control module also: activates opening of intake and exhaust valves of first ones of the cylinders that are to be activated based on the desired cylinder activation/deactivation sequence; and deactivates opening of intake and exhaust valves of second ones of the cylinders that are to be deactivated based on the desired cylinder activation/deactivation sequence. A fuel control module provides fuel to the first ones of the cylinders and disables fueling to the second ones of the cylinders.