Abstract:
A sleek, low-profile wall-mountable thermostat for controlling an HVAC system is described. The thermostat includes a ring-shaped controller that rotates about a central axis, and an optical sensor directed away from the central axis and toward a radially inward-facing surface of the ring-shaped controller so as to accurately detect optical signals indicating controller's rotational movement.
Abstract:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.
Abstract:
A sleek, low-profile wall-mountable thermostat for controlling an HVAC system is described. The thermostat includes a ring-shaped controller that rotates about a central axis, and an optical sensor directed away from the central axis and toward a radially inward-facing surface of the ring-shaped controller so as to accurately detect optical signals indicating controller's rotational movement.
Abstract:
An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
Abstract:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.
Abstract:
A thermostat may include a housing, a user interface, temperature sensors providing temperature sensor measurements, and a processing system configured to control an HVAC system based on a comparison of a determined ambient temperature and a setpoint temperature. The thermostat may (i) determine time intervals in which direct sunlight is incident on the thermostat; (ii) during time intervals in which direct sunlight is not incident on the thermostat, process the temperature sensor measurements according to a first ambient temperature determination algorithm to compute the determined ambient temperature; and (iii) during time intervals in which it is determined that direct sunlight is incident on the thermostat, process the temperature sensor measurements according to a second ambient temperature determination algorithm to compute the determined ambient temperature that compensates for a heating of the thermostat caused by the direct sunlight.
Abstract:
Various methods and systems for smart home devices are presented. Such smart home devices may include one or more environmental sensors that are configured to detect the presence of one or more environmental conditions. Such smart home devices may include a light comprising a plurality of lighting elements. Such a light may be configured to illuminate using a plurality of colors and, possibly, a plurality of animation patterns. Such smart home devices may include a processing system configured to cause the light to illuminate using the plurality of colors and the plurality of animation patterns in response to a plurality of states of the smart home device.
Abstract:
Various methods and systems for hazard detectors are presented. Such hazard detectors may include one or more hazard sensors that are configured to detect the presence of one or more types of hazards. Such hazard detectors may include a circular or a ring-shaped light comprising a plurality of lighting elements. Such a ring-shaped light may be configured to illuminate using a plurality of colors and, possibly, a plurality of animation patterns. Such hazard detectors may include a processing system configured to cause the ring-shaped light to illuminate using the plurality of colors and the plurality of animation patterns in response to a plurality of states corresponding to the battery module and the plurality of hazard sensors.
Abstract:
A smart-home device may include a plurality of temperature sensors, and a processing system that may be configured to operate a first operating state characterized by relatively low power consumption and a corresponding relatively low associated heat generation, and a second operating state characterized by relatively high power consumption and a corresponding relatively high associated heat generation. During time intervals in which the processing system is operating in the first operating state, the processing system may process the temperature sensor measurements according to a first ambient temperature determination algorithm to compute the determined ambient temperature. During time intervals in which the processing system is operating in the second operating state, the processing system may process the temperature sensor measurements according to a second ambient temperature determination algorithm to compute the determined ambient temperature.
Abstract:
Systems and methods for forecasting events can be provided. A measurement database can store sensor measurements, each having been provided by a non-portable electronic device with a primary purpose unrelated to collecting measurements from a type of sensor that collected the measurement. A measurement set identifier can select a set of measurements. The electronic devices associated with the set of measurements can be in close geographical proximity relative to their geographical proximity to other devices. An inter-device correlator can access the set and collectively analyze the measurements. An event detector can determine whether an event occurred. An event forecaster can forecast a future event property. An alert engine can identify one or more entities to be alerted of the future event property, generate at least one alert identifying the future event property, and transmit the at least one alert to the identified one or more entities.