Abstract:
An advantageous method and system for realizing electrically very reliable and mechanically extremely stable vias for components whose functionality is realized in a layer construction on a conductive substrate. The via (Vertical Interconnect Access), which is led to the back side of the component and which is used for the electrical contacting of functional elements realized in the layer construction, includes a connection area in the substrate that extends over the entire thickness of the substrate and is electrically insulated from the adjoining substrate by a trench-like insulating frame likewise extending over the entire substrate thickness. According to the present system, the trench-like insulating frame is filled up with an electrically insulating polymer.
Abstract:
A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate in a multistep anisotropic etching, and includes at least one mounting frame having at least one mounting surface and a stop structure, on the cap inner side, having at least one stop surface, the surface of the cap substrate being masked for the multistep anisotropic etching with at least two masking layers made of different materials, and the layouts of the masking layers and the number and duration of the etching steps being selected so that the mounting surface, the stop surface, and the cap inner side are situated at different surface levels of the cap structure.
Abstract:
A micromechanical component having a conductive substrate, a first conductive layer provided above the substrate and that forms, above a cavity provided in the substrate, an elastically deflectable diaphragm region of monocrystalline silicon and an adjacent peripheral region, a circuit trace level provided above the first conductive layer in a manner that is electrically insulated from the first conductive layer, the circuit trace level having above the diaphragm region a first electrode region and having above the peripheral region a first connection region electrically connected to the same, and a second conductive layer that is provided above the circuit trace level, the second conductive layer having above the diaphragm region a second electrode region that is electrically insulated from the first electrode region, and having above the peripheral region a second connection region electrically insulated from the second electrode region and electrically connected to the first connection region. Also provided is a suitable production method.
Abstract:
A device made of single-crystal silicon having a first side, a second side which is situated opposite to the first side, and a third side which extends from the first side to the second side, the first side and the second side each extending in a 100 plane of the single-crystal silicon, the third side extending in a first area in a 111 plane of the single-crystal silicon. The third side extends in a second area in a 110 plane of the single-crystal silicon. Furthermore, a production method for producing a device made of single-crystal silicon is described.
Abstract:
An electrically insulating sheathing for a piezoresistor and a semiconductor material are provided such that the piezoresistor is able to be used in the high temperature range, e.g., for measurements at higher ambient temperatures than 200° C. A doped resistance area is initially laterally delineated by at least one circumferential essentially vertical trench and is undercut by etching over the entire area. An electrically insulating layer is then created on the wall of the trench and the undercut area, so that the resistance area is electrically insulated from the adjacent semiconductor material by the electrically insulating layer.
Abstract:
A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
Abstract:
A method for producing a semiconductor component includes forming an n-doped layer in a p-doped layer of the semiconductor component, wherein the n-doped layer comprises at least one of: a sieve-like layer or a network-like layer. The method also includes porously etching the p-doped layer between the material of the n-doped layer to form a top electrode, and forming a cavity below the n-doped layer.
Abstract:
A method is described for producing a micromechanical component. The method includes providing a first substrate, providing a second substrate, developing a projecting patterned element on the second substrate, and connecting the first and the second substrate via the projecting patterned element. The method provides that the connecting of the first and the second substrate includes eutectic bonding. Also described is a micromechanical component, in which a first and a second substrate are connected to each other.
Abstract:
A method for attaching a first carrier device to a second carrier device includes forming at least one first bond layer and/or solder layer on a first exterior of the first carrier device, a partial surface being framed by the at least one first bond layer and/or solder layer, and placing the first carrier device on the second carrier device and fixedly bonding or soldering the first carrier device to the second carrier device. The at least one first bond layer and/or solder layer includes a first cover area which is larger than a first contact area.
Abstract:
A method is proposed which will enable cavities having optically transparent walls to be produced simply and cost-effectively in a component by using standard methods of microsystems technology. For this purpose, a silicon region is first produced, which is surrounded on all sides by at least one optically transparent cladding layer. At least one opening is then produced in the cladding layer. Over this opening, the silicon surrounded by the cladding layer is dissolved out, forming a cavity within the cladding layer. In this context, the cladding layer acts as an etch barrier layer.