摘要:
A nonvolatile semiconductor memory device includes a memory cell array including a plurality of memory cells each including a nonvolatile transistor, a plurality of row lines each connected to the memory cells arranged on a corresponding row, a plurality of column lines connected to the memory cells arranged on a corresponding column, an address buffer circuit for receiving external address signals at its address input terminal and for outputting internal address signals in response to the received external address signals, column line-select transistors connected to the column lines, a column-decoding circuit for selectively biasing the column line-select transistors, a row-decoding circuit for selectively biasing the row lines, and data-detecting circuit for detecting the potential of the column line selected by the column line-select transistor. The device further includes a control unit generating a control signal for controlling the address buffer circuit so that the internal address signal is set at a predetermined value, to set all the row lines in a non-selected state, thereby setting a column line, selected by the column line-select transistor, at a predetermined potential.
摘要:
A semiconductor integrated circuit including delay means for generating an output signal delayed by a predetermined time with respect to an input signal when a logic level of said input signal changes in a first direction. The delay means receives a control signal and generates an internal control signal which is delayed by a predetermined time with respect to the control signal when a logic level of the control signal changes in a first direction, including a capacitor for delaying the control signal and a resistor having one end and having the other end connected to the capacitor.
摘要:
When an erase voltage is applied to the sources of data erasable and rewritable memory cells each having a floating gate, the erasure characteristics of the memory cells can be improved by controlling the rise time of the erase voltage or by increasing the erase voltage stepwise. In test mode, no row lines are selected by a row decoder and further the sources of the respective memory cells are set to ground level. Under these conditions, in case there exists an overerased memory cell, this cell is turned on due to depletion, so that it is possible to detect the presence of the overerased memory cell on the basis of change in potential of the column line connected to this turned on memory cell. A differential amplifier is used to detect the change in potential of the column line. In the test mode, the potential of the column lines is compared with a reference potential applied to a dummy column line, and a source bias generating circuit applies a test potential suitable for test to the respective sources of the cells, to shift the threshold level of the respective cells in a positive direction, for instance. By applying this test potential to the cells, it is possible to detect the pseudo-threshold level shifted in the positive direction; that is, to detect the overerased status of the memory cell more properly.
摘要:
A sub-booster circuit for further stepping up an output voltage of a main booster circuit includes a first MOS transistor having a drain connected to the output terminal of the main booster circuit, and a gate connected to an input terminal of an object circuit, a second MOS transistor having a drain and a gate connected to the source of the first MOS transistor and a source connected to the input terminal of the object circuit, and a MOS capacitor having a first electrode connected to a connection node between the first and second MOS transistors and a second electrode connected to receive a clock pulse signal. A threshold voltage of the second MOS transistor is set to be larger in its absolute value than a threshold voltage of the first MOS transistor and the MOS capacitor has substantially the same threshold voltage as that of the second MOS transistor.
摘要:
A control pulse generator according to the present invention includes a voltage generator for generating an output voltage proportional to a power supply voltage, an inverter for generating an inversion signal whose signal level is inverted when the output voltage from the voltage generator reaches a predetermined value, and a pulse signal generator for delaying a level inversion timing of the inversion signal by a predetermined delay time, and generating a control pulse having a width corresponding to the delay time. According to the control pulse generator with the above arrangement, the width of the control pulse can be determined on the basis of the delay time of the pulse signal generator, regardless of rise states of the power supply voltage. In addition, the height of the control pulse can be set at a desired value according to a supply voltage to the pulse signal generator, regardless of rise states of the supply voltage.
摘要:
In an electrically-erasable/programmable nonvolatile semiconductor memory device according to the invention, a one-bit memory cell is constituted by a series circuit of a selecting MOS transistor and a data storage MOS transistor. A floating gate electrode and a control gate electrode are formed in the data storage MOS transistor, One portion of the floating gate electrode is formed on a channel region of the data storage MOS transistor through a gate insulating film. The other portion of the floating gate electrode is formed on a drain region of the data storage MOS transistor through a gate insulating film, a portion of which is sufficiently thinner than the gate insulating film. One and the other portions of the floating gate electrode are structurally separated from each other but are electrically connected with each other on a field region. A control gate electrode having substantially the same shape as that of the floating gate electrode is formed thereon through a gate insulating film.
摘要:
A semiconductor memory device having a memory cell array with a plurality of transistors (memory cells MC) disposed in a matrix form capable of electrically altering data. In writing data to a plurality of memory cells (MC), a write voltage (V.sub.pp ') is applied to the plurality of memory cells (MC) from a plurality of write circuits (7). The write voltage is generated by boosting an internal voltage (V.sub.CC) by a charge pump circuit (21). In writing data, one of the following methods is used. The plurality of write circuits (7) are sequentially activated by a write control circuit (20) at intervals of delayed timings. The operating point of each memory cell (transistor)(MC) is controlled by operating point control means so as to reduce a current. A capacitor is connected to the output side of the charge pump circuit, and a boosted write voltage is supplied via the capacitor to the write circuit.
摘要:
When an erase voltage is applied to the sources of data erasable and rewritable memory cells each having a floating gate, the erasure characteristics of the memory cells can be improved by controlling the rise time of the erase voltage or by increasing the erase voltage stepwise. In test mode, no row lines are selected by a row decoder and further the sources of the respective memory cells are set to ground level. Under these conditions, in case there exists an overerased memory cell, this cell is turned on due to depletion, so that it is possible to detect the presence of the overerased memory cell on the basis of change in potential of the column line connected to this turned on memory cell. A differential amplifier is used to detect the change in potential of the column line. In the test mode, the potential of the column lines is compared with a reference potential applied to a dummy column line, and a source bias generating circuit applies a test potential suitable for test to the respective sources of the cells, to shift the threshold level of the respective cells in a positive direction, for instance. By applying this test potential to the cells, it is possible to detect the pseudo-threshold level shifted in the positive direction; that is, to detect the overerased status of the memory cell more properly. Further, the erasure is effected until the threshold level of a memory cell of the highest erasure speed reaches a predetermined level, irrespective of the threshold distribution width of the memory cells, thus realizing a higher speed access to the device of narrower threshold distribution width, as compared with the conventional device.
摘要:
When an erase voltage is applied to the sources of data erasable and rewritable memory cells each having a floating gate, the erasure characteristics of the memory cells can be improved by controlling the rise time of the erase voltage or by increasing the erase voltage stepwise. In test mode, no row lines are selected by a row decoder and further the sources of the respective memory cells are set to ground level. Under these conditions, in case there exists an overerased memory cell, this cell is turned on due to depletion, so that it is possible to detect the presence of the overerased memory cell on the basis of change in potential of the column line connected to this turned on memory cell. A differential amplifier is used to detect the change in potential of the column line. In the test mode, the potential of the column lines is compared with a reference potential applied to a dummy column line, and a source bias generating circuit applies a test potential suitable for test to the respective sources of the cells, to shift the threshold level of the respective cells in a positive direction, for instance. By applying this test potential to the cells, it is possible to detect the pseudo-threshold level shifted in the positive direction; that is, to detect the overerased status of the memory cell more properly. Further, the erasure is effected until the threshold level of a memory cell of the highest erasure speed reaches a predetermined level, irrespective of the threshold distribution width of the memory cells, thus realizing a higher speed access to the device of narrower threshold distribution width, as compared with the conventional device.
摘要:
When an erase voltage is applied to the sources of data erasable and rewritable memory cells each having a floating gate, the erasure characteristics of the memory cells can be improved by controlling the rise time of the erase voltage or by increasing the erase voltage stepwise. In test mode, no row lines are selected by a row decoder and further the sources of the respective memory cells are set to ground level. Under these conditions, in case there exists an overerased memory cell, this cell is turned on due to depletion, so that it is possible to detect the presence of the overerased memory cell on the basis of change in potential of the column line connected to this turned on memory cell. A differential amplifier is used to detect the change in potential of the column line. In the test mode, the potential of the column lines is compared with a reference potential applied to a dummy column line, and a source bias generating circuit applies a test potential suitable for test to the respective sources of the cells, to shift the threshold level of the respective cells in a positive direction, for instance. By applying this test potential to the cells, it is possible to detect the pseudo-threshold level shifted in the positive direction; that is, to detect the overerased status of the memory cell more properly. Further, the erasure is effected until the threshold level of a memory cell of the highest erasure speed reaches a predetermined level, irrespective of the threshold distribution width of the memory cells, thus realizing a higher speed access to the device of narrower threshold distribution width, as compared with the conventional device.