Abstract:
A disconnect assembly includes a solid frame comprising a slit and a first liquid coolant circuit leading to a frame outlet defined in an inner wall of the slit. The assembly further includes an insert element, insertable in the slit so as to reach a sealing position. The latter defines a shut state, in which the insert element seals the frame outlet. The assembly includes a cold plate, comprising a second liquid coolant circuit with a duct open on a side of the cold plate. The cold plate can be inserted in the slit, so as to push the insert element, for the latter to leave the sealing position and the cold plate to reach a fluid communication position. This position defines an open state, in which the duct is vis-à-vis the frame outlet, to enable fluid communication between the first liquid coolant circuit and the second liquid coolant circuit.
Abstract:
This invention relates to cooling devices for multi-chip semiconductor devices, system-on-a-package devices, and other packaged devices. Because of the non-uniform height across the surface in such large-chip and multi-chip assemblies, providing heat exchange can be troublesome. Many air cooled heat sinks are too stiff to adapt to such non-uniform or warped shapes of chips or to shape-changing chip surfaces during operation. In the present disclosure, application of a mechanical load perpendicular to the chip plane causes certain features to flex and adapt to the non-uniform height of the chip plane, providing improved heat exchange.
Abstract:
This invention relates to cooling devices for multi-chip semiconductor devices, system-on-a-package devices, and other packaged devices. Because of the non-uniform height across the surface in such large-chip and multi-chip assemblies, providing heat exchange can be troublesome. Many air cooled heat sinks are too stiff to adapt to such non-uniform or warped shapes of chips or to shape-changing chip surfaces during operation. In the present disclosure, application of a mechanical load perpendicular to the chip plane causes certain features to flex and adapt to the non-uniform height of the chip plane, providing improved heat exchange.
Abstract:
A method is disclosed for operating a photovoltaic thermal hybrid system having a hybrid solar receiver with a photovoltaic module, operatively coupled to the system to deliver an electrical output power for a power user, a thermal collector distinct from the photovoltaic module, wherein the photovoltaic module and/or the thermal collector are movably mounted in the system, a collector thermal storage thermally connected to the thermal collector to store heat collected at the thermal collector, and a positioning mechanism adapted to move the photovoltaic module and/or the thermal collector. The method includes instructing the positioning mechanism to move the photovoltaic module and/or the thermal collector to change a ratio of an intensity of radiation received at the photovoltaic module to an intensity of radiation received at the thermal collector.
Abstract:
A device for converting heat into mechanical energy is disclosed. The device includes a channel flow boiler having at least one channel adapted to heat a working fluid for generating a liquid-gas mixture; an expansion device adapted to expand the liquid-gas mixture; and a movable element arranged such that the expanding liquid-gas mixture at least partially converts an internal and/or kinetic energy of the liquid-gas mixture into mechanical energy associated with the movable element; wherein the channel flow boiler and/or the expansion device is adapted to supply heat to the liquid-gas mixture.
Abstract:
A chip module cooling device includes two fluid circuits corresponding to inlet and outlet fluid circuits, respectively, wherein each comprises orifices and channel portions forming a tree structure, wherein branches represent the orifices, and nodes represent the channel portions, a branch linking a node to one child node only, wherein several nodes having a same parent node are sibling nodes and extends through L levels of the tree structure, with L≧3, and in fluidic connection with the other of the two fluid circuits, via channel portions corresponding to leaf nodes. For each fluid circuit, channel portions corresponding to sibling nodes are parallel to each other, and are not parallel to a channel portion corresponding to a parent node of the sibling nodes; and wherein channel portions of one of the fluid circuits are parallel to and interdigitated with channel portions of the other one of the fluid circuits.
Abstract:
A computer program product or hardware description language (“HDL”) design structure in a computer-aided design system for generating a functional design model of an integrated circuitry structure including generating a functional representation of at least first and second regions of the integrated circuitry structure, generating a functional representation of an optical layer comprising optical waveguides, and generating a functional representation of a heat-conductive material for transferring heat from at least the second region through the optical layer to a heat sink.
Abstract:
A desalination system (1) for producing a distillate from a feed liquid includes: a steam raising device (2) having a liquid section (5) and a steam section (6) which are separated by a membrane system (7); a membrane distillation device (3) having a first steam section (11) and a liquid section (12) which are separated by a wall (14) and having a second steam section (13) which is separated from the liquid section (12) by a membrane system (15); and a heat exchange device (4) having a first liquid section (21) and a second liquid section (22), which are separated by a wall (23).
Abstract:
A method of modifying a resonant frequency of a quantum device includes generating an ion beam having a beam energy and exposing a surface of the quantum device to the ion beam for an exposure time. The ion beam is incident onto the quantum device at an oblique angle that is less than 90 degrees as measured from the surface of the quantum device. The quantum device includes a Josephson junction, the ion beam exposing the quantum device proximate to the Josephson junction to modify a property of the Josephson junction, the property being associated with the resonant frequency of the quantum device.
Abstract:
One or more embodiments of the present invention are directed to a photovoltaic system. The system comprises photovoltaic cells, arranged side-by-side to form an array of photovoltaic cells. It further involves a cooling device, which comprises one or more layers, wherein the layers extend opposite to the array of photovoltaic cells and in thermal communication therewith, for cooling the cells, in operation. The one or more layers are structured such that a thermal resistance of the photovoltaic system varies across the array of photovoltaic cells, so as to remove heat from photovoltaic cells of the array with different heat removal rates, in operation. One or more embodiments of the present invention are further directed to related systems and methods for cooling such photovoltaic systems.