Abstract:
In an approach to determine one or more exposure areas in a reticle field and associated lithography process parameters for the one or more exposure areas, the computer receives a semiconductor design and sends the semiconductor design to a design analysis program. Additionally, the computer receives data from the design analysis program. Furthermore, the computer determines one or more exposure areas in the reticle field, and at least one lithography process parameter for each of the one or more exposure areas in the reticle field based, at least in part, on the data from the design analysis program, the semiconductor design, and one or more clustering algorithms associated with the design analysis program.
Abstract:
Via-level design shapes are mapped into stitch regions of line-level design shapes design in an overlying conductive line level. A via-catching design shape is provided in an underlying conductive line level for each stitch region that does not correspond to a via-level design shape. The shapes of the stitch regions and the via-catch design shapes can be adjusted to comply with design rule constraints. Further, stitches can be optionally moved into a neighboring line-level design shape to resolve design rule conflicts. The modified design layout can eliminate via-level design shapes once all via-level design shapes are replaced with a corresponding stitch region, thereby eliminating the need to provide a via level lithographic mask. A metal interconnect structure embodying the modified design layout can be formed by employing a set of hard mask layers and without employing a lithographic mask for a via level.
Abstract:
A design layout is provided such that an underlying conductive line structure underlies a stitch region in an overlying conductive line structure. A stitch-induced via structure can be formed between the underlying conductive line structure and the overlying conductive line structure when a stitch region in a hard mask layer is etched multiple times. At least one of the underlying conductive line structure and the overlying conductive line structure is electrically isolated from other conductive line structures in a same design level so as to avoid unintentional electrical shorts.
Abstract:
A metal interconnect structure, a system and method of manufacture, wherein a design layout includes results in forming at least two trenches of different trench depths. The method uses a slightly modified BEOL processing stack to prevent metal interconnect structures from encroaching upon an underlying hard mask dielectric or metallic hard mask layer. Thus two trench depths are obtained by tuning parameters of the system and allowing areas exposed by two masks to have deeper trenches. Here, the BEOL Stack processing is modified to enable two trench depths by using a hardmask that defines the lowest etch depth. The design may be optimized by software which optimizes a design for electromigration (or setup timing violations) by utilizing secondary trench depths, checking space opportunity around wires, pushing wires out to generate space and converting a wire to deep trench wire.
Abstract:
A design layout is provided such that an underlying conductive line structure underlies a stitch region in an overlying conductive line structure. A stitch-induced via structure can be formed between the underlying conductive line structure and the overlying conductive line structure when a stitch region in a hard mask layer is etched multiple times. At least one of the underlying conductive line structure and the overlying conductive line structure is electrically isolated from other conductive line structures in a same design level so as to avoid unintentional electrical shorts.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
A method of determining focal planes during a photolithographic exposure of a wafer surface is provided. The method may include receiving data corresponding to a surface topography of the wafer surface and determining, based on the received data corresponding to the surface topography, a plurality of regions having substantially different topographies. Reticle design data is received for exposure on the wafer surface, whereby, from the received reticle design data, reticle design data subsets that are each allocated to a corresponding one of the determined plurality of regions are generated. A best fit focal plane is then generated for each of the determined plurality of regions.
Abstract:
A test layout structure including a first series of parallel metal lines in a first level, and a first series of contact structures in a second level, the second level being positioned above the first level, the first series of contact structures being positioned at known increments, where the increments are in a direction perpendicular to a length of the first series of parallel metal lines, and where one or more of the first series of contact structures is in electrical contact with one or more of the first series of parallel metal lines.