Abstract:
This is directed to methods and apparatus for shielding a circuitry region of an electronic device from interference (e.g., EMI). A conductive dam may be formed about a periphery of the circuitry region. A non-conductive or electrically insulating fill may then be applied to the circuitry region within the dam. Next, a conductive cover may be applied above the fill. The cover may be electrically coupled to the dam. The dam may include two or more layers of conductive material stacked on top of one another. In some embodiments, the conductive cover may be pad printed or screen printed above the fill. In other embodiments, the conductive cover may be a conductive tablet that is melted above the fill.
Abstract:
This is directed to methods and apparatus for shielding a circuitry region of an electronic device from interference (e.g., EMI). A conductive dam may be formed about a periphery of the circuitry region. A non-conductive or electrically insulating fill may then be applied to the circuitry region within the dam. Next, a conductive cover may be applied above the fill. The cover may be electrically coupled to the dam. The dam may include two or more layers of conductive material stacked on top of one another. In some embodiments, the conductive cover may be pad printed or screen printed above the fill. In other embodiments, the conductive cover may be a conductive tablet that is melted above the fill.
Abstract:
A battery circuit includes a battery cell, monitoring circuitry configured to determine one or more parameters of the battery cell, a pouch enclosing the battery cell and the monitoring circuitry in a sealed, internal cavity, the pouch being configured to inhibit ingress of external fluid to the sealed, internal cavity, and an electrical connector exterior the pouch and electrically connected to the battery cell and the monitoring circuitry via one or more paths extending through the pouch and into the internal cavity.
Abstract:
Examples disclosed herein relate to a continuous separator having perforations to help reduce or prevent wrinkling of the separator when producing curved electrode stacks. One example provides a battery comprising a plurality of discontinuous electrode layers, and a continuous separator separating the discontinuous electrode layers, the continuous separator having perforations extending at least partially through a depth of the continuous separator in a folded region of the continuous separator.
Abstract:
Examples are disclosed herein that relate to insert molding a heat pipe into a molded part. One example provides a method including inserting a heat pipe into a mold, injecting a material into the mold to at least partially surround the heat pipe and allowing the material to harden into a molded part that incorporates the heat pipe, and incorporating the molded part into a computing device.
Abstract:
A passive heat pipe structure used in a wearable device includes a multilayer stack of graphite sheets, each sheet having a plane high thermal conductivity oriented along a first axis and a plane of lower thermal conductivity along a second axis different from the first axis. The stack has a three-dimensional shape including a length and a width where the length is longer than the width and the first axis aligns parallel to said length, the multilayer stack having a height less than the width. A plurality of bonding layers interspersed between each sheet of the multilayer stack, each bonding layer thermally coupling each sheet to a respective adjacent sheet. The bonding layers may comprise metal layers or adhesive layers.
Abstract:
An apparatus comprising an optical mounting structure configured to house heat producing electrical components and display optical systems. The optical mounting structure includes a frame where at least one of the structural components of the frame at least partially comprises a plastic including a plurality of carbon nanoparticles. One or more graphite layers are bonded with the at least one component and thereby combining with the plastic to remove heat from the frame and heat producing electrical components. A method of creating an optical structure adapted to support a plurality of heat emitting components is also provided.
Abstract:
This is directed to methods and apparatus for shielding a circuitry region of an electronic device from interference (e.g., EMI). A conductive dam may be formed about a periphery of the circuitry region. A non-conductive or electrically insulating fill may then be applied to the circuitry region within the dam. Next, a conductive cover may be applied above the fill. The cover may be electrically coupled to the dam. The dam may include two or more layers of conductive material stacked on top of one another. In some embodiments, the conductive cover may be pad printed or screen printed above the fill. In other embodiments, the conductive cover may be a conductive tablet that is melted above the fill.
Abstract:
Printed circuit boards are provided with embedded components. The embedded components may be mounted within recesses in the surface of a printed circuit board substrate. The printed circuit board substrate may have grooves and buried channels in which wires may be mounted. Recesses may be provided with solder pads to which the wires may be soldered or attached with conductive adhesive. An integrated switch may be provided in an opening within a printed circuit board substrate. The integrated switch may have a dome switch member that is mounted within the opening. A cover member for the switch may be formed from a flexible layer that covers the dome switch member. Terminals for the integrated switch may be formed from conductive structures in an interior printed circuit board layer. Interconnects may be used to electrically connect embedded components such as switches, integrated circuits, solder pads for wires, and other devices.