摘要:
In one embodiment, a semiconductor device includes a semiconductor substrate having a lower layer and an upper layer overlying the lower layer. The upper layer is arranged and structured to form first and second active regions that are spaced apart from each other and protrude from an upper surface of the lower layer. A third active region of a bridge shape is distanced vertically from the upper surface of the lower layer and connects the first and second active regions. The device further includes a gate electrode, which is formed with a gate insulation layer surrounding the third active region, so that the third active region functions as a channel.
摘要:
A fin type MOSFET and a method of manufacturing the fin type MOSFET are disclosed. Gate structures in the fin type MOSFET are formed by a damascene process without a photolithography process. Impurities used to form a channel region are selectively implanted into portions of a semiconductor substrate adjacent to the gate structures.
摘要:
A semiconductor device may include a tubular channel pattern vertically extending from a semiconductor substrate. A gate insulation layer may be provided on faces exposed through the channel pattern. A gate electrode may be provided on the gate insulation layer. The gate electrode may fill the channel pattern. A conductive region, which may serve as lower source/drain regions, may be formed at a surface portion of the semiconductor substrate. The conductive region may contact a lower portion of the channel pattern. A conductive pattern, which may serve as upper source/drain regions, may horizontally extend from an upper portion of the channel pattern.
摘要:
There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures. A bit line separation insulating layer and a peripheral circuit isolation layer are formed inside the bit line separation trench and the peripheral circuit trench, respectively.
摘要:
According to some embodiments, a fin type active region is formed under an exposure state of sidewalls on a semiconductor substrate. A gate insulation layer is formed on an upper part of the active region and on the sidewalls, and a device isolation film surrounds the active region to an upper height of the active region. The sidewalls are partially exposed by an opening part formed on the device isolation film. The opening part is filled with a conductive layer that partially covers the upper part of the active region, forming a gate electrode. Source and drain regions are on a portion of the active region where the gate electrode is not. The gate electrode may be easily separated and problems causable by etch by-product can be substantially reduced, and a leakage current of channel region and an electric field concentration onto an edge portion can be prevented.
摘要:
There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures. A bit line separation insulating layer and a peripheral circuit isolation layer are formed inside the bit line separation trench and the peripheral circuit trench, respectively.
摘要:
Provided is a double gate field effect transistor and a method of manufacturing the same. The method of manufacturing the double gate field effect transistor comprises forming as many fins as required by etching a silicon substrate, masking the resultant product by an insulating material such as silicon nitride, forming trench regions for device isolation and STI film by using the silicon nitride mask, forming gate oxide films on both faces of the fins after removing the hard mask, and forming a gate line. As such, unnecessary channel formation under the silicon oxide film, when a voltage higher than a threshold voltage is applied to the substrate, is prevented by forming a thick silicon oxide film on the substrate on which no protruding fins are formed.
摘要:
According to some embodiments, a fin type active region is formed under an exposure state of sidewalls on a semiconductor substrate. A gate insulation layer is formed on an upper part of the active region and on the sidewalls, and a device isolation film surrounds the active region to an upper height of the active region. The sidewalls are partially exposed by an opening part formed on the device isolation film. The opening part is filled with a conductive layer that partially covers the upper part of the active region, forming a gate electrode. Source and drain regions are on a portion of the active region where the gate electrode is not. The gate electrode may be easily separated and problems causable by etch by-product can be substantially reduced, and a leakage current of channel region and an electric field concentration onto an edge portion can be prevented.
摘要:
A method of manufacturing a transistor according to some embodiments includes sequentially forming a dummy gate oxide layer and a dummy gate electrode on an active region of a semiconductor substrate, ion-implanting a first conductive impurity into source/drain regions to form first impurity regions, and ion-implanting the first conductive impurity to form second impurity regions that are overlapped by the first impurity regions. The method includes forming a pad polysilicon layer on the source/drain regions, sequentially removing the pad polysilicon layer and the dummy gate electrode from a gate region of the semiconductor substrate, annealing the semiconductor substrate, and ion-implanting a second conductive impurity to form a third impurity region in the gate region. The method includes removing the dummy gate oxide layer, forming a gate insulation layer, and forming a gate electrode on the gate region.
摘要:
There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures. A bit line separation insulating layer and a peripheral circuit isolation layer are formed inside the bit line separation trench and the peripheral circuit trench, respectively.