摘要:
Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
摘要:
The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
摘要:
This invention is generally related to a method of making a molecule-surface interface comprising at least one surface comprising at least one material and at least one organic group wherein the organic group is adjoined to the surface and the method comprises contacting at least one organic group precursor with at least one surface wherein the organic group precursor is capable of reacting with the surface in a manner sufficient to adjoin the organic group and the surface.
摘要:
The present invention provides methods by which carbon nanotubes can be functionalized under solvent-free conditions. As extremely large quantities are typically required to dissolve or disperse carbon nanotubes, solvent elimination the processes more favorable for scale-up. Such processes are also amenable to a wide variety of chemical reactions are functionalizing agents.
摘要:
The present invention is directed to methods of separating carbon nanotubes (CNTs) by their electronic type (e.g., metallic, semi-metallic, and semiconducting). Perhaps most generally, in some embodiments, the present invention is directed to methods of separating CNTs by bandgap, wherein such separation is effected by interacting the CNTs with a surface such that the surface interacts differentially with the CNTs on the basis of their bandgap, or lack thereof. In some embodiments, such methods can allow for such separations to be carried out in bulk quantities.
摘要:
A new class of electronic systems, wherein microelectronic semiconductor integrated circuit devices are integrated on a common substrate with molecular electronic devices.
摘要:
A new class of electronic systems, wherein microelectronic semiconductor integrated circuit devices are integrated on a common substrate with molecular electronic devices.
摘要:
A process for separating C.sub.60, C.sub.70, and higher fullerenes above C.sub.70 is provided. The process employs a chromatographic column utilizing a functionalized aromatic-containing resin as the stationary phase, an organic solvent as the mobile phase, and a mixture of fullerenes dissolved in the mobile phase.
摘要:
A low-cost and facile method of purifying fullerenes to obtain a preparation enriched in a fullerene of selected molecular weight using activated carbon involves adding a fullarena mixture to the top end of a column comprising activated carbon, passing a solvent in which the selected molecular weight fullerene is soluble through the column, and recovering a fraction enriched in the selected molecular weight fullerene from the bottom end of the column. In addition to activated carbon, the column may further comprise silica gel, diatomaceous earth, or other materials which aid in column packing and eluent flow. The invention also provides for preparation of gram quantities of pure C.sub.60 and C.sub.70 fullerenes after a single column pass.
摘要:
The present invention relates to ceramic materials containing a homogeneous dispersion of one or more metals, particularly sol-gel ceramic materials, a method of preparing the same, and processes for hydrogenating or oxidizing organic compounds using the same.