Abstract:
Defects can be identified using a hybrid design layout that includes a printable layer and a non-printed layer. The hybrid design layout can be generated by incorporating at least a portion of the non-printable layer layout with the printable layer layout. Defects can be identified using optical or scanning electron beam images.
Abstract:
Various embodiments for using three-dimensional representations for defect-related applications are provided. One computer-implemented method for determining one or more inspection parameters for a wafer inspection recipe includes generating a three-dimensional representation of one or more layers of a wafer based on design data. The method also includes determining one or more inspection parameters for a wafer inspection recipe based on the three-dimensional representation.
Abstract:
Methods and systems for determining characteristic(s) of patterns of interest (POIs) are provided. One system is configured to acquire output of an inspection system generated at the POI instances without detecting defects at the POI instances. The output is then used to generate a selection of the POI instances. The system then acquires output from an output acquisition subsystem for the selected POI instances. The system also determines characteristic(s) of the POI using the output acquired from the output acquisition subsystem.
Abstract:
Methods and systems for binning defects on a wafer are provided. One method includes identifying areas in a design for a layer of a device being fabricated on a wafer that are not critical to yield of fabrication of the device and generating an altered design for the layer by eliminating features in the identified areas from the design for the layer. The method also includes binning defects detected on the layer into groups using the altered design such that features in the altered design proximate positions of the defects in each of the groups are at least similar.
Abstract:
A weak pattern identification method includes acquiring inspection data from a set of patterns on a wafer, identifying failing pattern types on the wafer, and grouping like pattern types of the failing pattern types into a set of pattern groups. The weak pattern identification method also includes acquiring image data from multiple varied instances of a first pattern type grouped in a first group, wherein the multiple varied instances of the first pattern type are formed under different conditions. The weak pattern identification method also includes comparing images obtained from common structures of the instances of the first pattern type to identify local differences within a portion of the first pattern type. Further, the weak pattern identification method includes identifying metrology sites within the portion of the first pattern type proximate to a location of the local differences within the portion of the first pattern type.
Abstract:
A fabricated device having consistent modulation between target and reference components is provided. The fabricated device includes a target component having a first modulation. The fabricated device further includes at least two reference components for the target component including a first reference component and a second reference component, where the first reference component and the second reference component each have the first modulation. Further, a system, method, and computer program product are provided for detecting defects in a fabricated target component using consistent modulation for the target and reference components.
Abstract:
Methods and systems for detecting anomalies in images of a specimen are provided. One system includes one or more computer subsystems configured for acquiring images generated of a specimen by an imaging subsystem. The computer subsystem(s) are also configured for determining one or more characteristics of the acquired images. In addition, the computer subsystem(s) are configured for identifying anomalies in the images based on the one or more determined characteristics without applying a defect detection algorithm to the images or the one or more characteristics of the images.
Abstract:
Universal target based inspection drive metrology includes designing a plurality of universal metrology targets measurable with an inspection tool and measurable with a metrology tool, identifying a plurality of inspectable features within at least one die of a wafer using design data, disposing the plurality of universal targets within the at least one die of the wafer, each universal target being disposed at least proximate to one of the identified inspectable features, inspecting a region containing one or more of the universal targets with an inspection tool, identifying one or more anomalistic universal targets in the inspected region with an inspection tool and, responsive to the identification of one or more anomalistic universal targets in the inspected region, performing one or more metrology processes on the one or more anomalistic universal metrology targets with the metrology tool.
Abstract:
Inspection guided overlay metrology may include performing a pattern search in order to identify a predetermined pattern on a semiconductor wafer, generating a care area for all instances of the predetermined pattern on the semiconductor wafer, identifying defects within generated care areas by performing an inspection scan of each of the generated care areas, wherein the inspection scan includes a low-threshold or a high sensitivity inspection scan, identifying overlay sites of the predetermined pattern of the semiconductor wafer having a measured overlay error larger than a selected overlay specification utilizing a defect inspection technique, comparing location data of the identified defects of a generated care area to location data of the identified overlay sites within the generated care area in order to identify one or more locations wherein the defects are proximate to the identified overlay sites, and generating a metrology sampling plan based on the identified locations.
Abstract:
Methods and systems for detecting defects on a wafer are provided. One method includes acquiring output for a wafer generated by an inspection system. Different dies are printed on the wafer with different process conditions. The different process conditions correspond to different failure modes for the wafer. The method also includes comparing the output generated for a first of the different dies printed with the different process conditions corresponding to a first of the different failure modes with the output generated for a second of the different dies printed with the different process conditions corresponding to a second of the different failure modes opposite to the first of the different failure modes. In addition, the method includes detecting defects on the wafer based on results of the comparing step.