Abstract:
A spark-ignition direct injection engine is provided. The engine includes an engine body, a fuel injection valve, a fuel pressure setting mechanism, an ignition plug, and a controller. The controller operates the engine to perform compression-ignition combustion within a first operating range, and controls the ignition plug to operate the engine to perform spark-ignition combustion within a second operating range. Within a specific part of the first range, the controller sets the fuel pressure to 30 MPa or above, and retards the compression ignition to after a compression top dead center by controlling the injection valve to inject fuel into a cylinder in a period from a late stage of compression stroke to an early stage of expansion stroke. Below the specific part, the controller controls the fuel injection valve to inject the fuel into the cylinder in a period from intake stroke to a mid-stage of the compression stroke.
Abstract:
A compression ignition gasoline engine includes a fuel injection valve for injecting fuel containing gasoline as a main component into a cylinder; an EGR device operative to perform high-temperature EGR of introducing burnt gas generated in the cylinder into the cylinder at a high temperature; and a combustion control unit for controlling the fuel injection valve and the EGR device in such a way that HCCI combustion in which fuel injected from the fuel injection valve self-ignites within the cylinder occurs. The combustion control unit controls the EGR device, in at least a partial load operating range in which HCCI combustion is performed, in such a way that the EGR rate increases, as compared with a low load condition, in a high load condition in which G/F being a ratio between a total amount of gas and a fuel amount within the cylinder decreases.
Abstract:
An engine includes: a piston including a cavity; a cylinder head configured so as to form a combustion chamber having a pent roof shape; a fuel injection valve configured to inject fuel from a second half of a compression stroke until a first half of an expansion stroke; and a spark plug arranged at a position corresponding to an upper side of the cavity. Injection openings which are arranged in a circumferential direction surrounding a longitudinal axis of the valve and through each of which the fuel is injected in a direction inclined relative to the longitudinal axis by a predetermined angle is formed such that when a height of a ceiling of the combustion chamber at a position corresponding to an edge end portion of the cavity in an injection direction of the injection opening is large, the injection angle of the injection opening is large.
Abstract:
An engine includes: a piston including a cavity; a cylinder head configured to form a combustion chamber having a pent roof shape; a fuel injection valve configured to inject fuel from a second half of a compression stroke until a first half of an expansion stroke; and a spark plug arranged at a position corresponding to an upper side of the cavity. Injection openings are arranged in a circumferential direction surrounding a longitudinal axis of the valve. The combustion chamber at a compression top dead center is divided into a plurality of fuel injection regions, located in respective injection directions of the injection openings, by vertical surfaces extending radially from the longitudinal axis through a middle between adjacent injection openings. When a volume of the fuel injection region located in the injection direction of the injection opening is large, an opening area of the injection opening is large.
Abstract:
Injection of the fuel by the injector 43 creates a gas flow in the combustion chamber. The gas expands in a radial fashion from an axis of a cylinder toward a radial outside of the cylinder, and then flows from the radial outside along the cylinder head bottom face 221 toward the axis of the cylinder. The spark plug 41 has a gap positioned away from the axis of the cylinder toward the radial outside of the cylinder at a predetermined distance, and placed radially inwardly from a position opposite a rim of an opening of the cavity 242. A side electrode extends to be oriented in a direction perpendicular to the flow of the gas along the cylinder head bottom face. The gap has a center positioned near the cylinder head bottom face, and closer to an interior of a combustion chamber than to the cylinder head bottom face.
Abstract:
A controller injects fuel into a cylinder at a high fuel pressure of 30 MPa or higher, at least in a period between a terminal stage of a compression stroke and an initial stage of an expansion stroke when an operating mode of an engine body is at least in a first specified sub-range of a low load range, and at least in a second specified sub-range of a high load range. The controller sets an EGR ratio in the first specified sub-range to be higher than an EGR ratio in the second specified sub-range, and advances start of fuel injection in the first specified sub-range to start of fuel injection in the second specified sub-range.
Abstract:
A control device for a compression ignition engine includes a controller configured to operate an engine body by compression ignition combustion when the engine body operates in a compression ignition range. When the engine body operates in a low load range with a load lower than a predetermined load in the compression ignition range, the controller sets a time of fuel injection with the fuel injection valve in a first half of a compression stroke or earlier, and allows the ozonator to introduce the ozone into the cylinder. When the engine body operates in the low load range, the controller controls an ozone concentration to be lower at a higher speed than at a low speed.
Abstract:
A control device for a compression ignition engine includes a controller configured to operate an engine body by compression ignition combustion when the engine body operates in a predetermined compression ignition range. When the engine body operates in a predetermined high load range of the compression ignition range, the controller maximizes a filling amount of the cylinder using a gas state adjustment system, and lowers an EGR ratio so that the air-fuel mixture in the cylinder is lean with an excess air ratio λ higher than 1 in a lower speed range, and maximizes the filling amount of the cylinder, and increases the EGR ratio so that the air-fuel mixture in the cylinder has the excess air ratio λ of 1 or lower in a higher speed range than the lower speed range.
Abstract:
A control device of a compression-ignition engine is provided. The control device includes the engine having a cylinder, an exhaust gas recirculation system for introducing exhaust gas into the cylinder, and a controller for operating the engine by compression-ignition combustion of mixture gas inside the cylinder within a predetermined compression-ignitable range on a low engine load side. Within the compression-ignitable range, the controller sets an EGR ratio higher as the engine load becomes lower, and the controller sets the EGR ratio to a predetermined highest EGR ratio when the engine load is at a specific load that is on the low engine load side within the compression-ignitable range. When the engine load is lower than the specific load, the controller sets the EGR ratio to be lower than the highest EGR ratio.
Abstract:
An engine body includes a cylinder with a geometrical compression ratio of 15 or higher, and is supplied with fuel containing at least gasoline. When an operating mode of the engine body is in a high load range, a controller (i.e., a PCM 10) drives a fuel injection valve (i.e., an injector) 67 to inject the fuel at a time within a retarded period between a terminal stage of a compression stroke and an initial stage of an expansion stroke in a low speed range. The controller drives the fuel injection valve to inject the fuel in an intake stroke until an intake valve 21 is closed in a high-load high-speed range.