摘要:
A process for forming a semiconductor integrated circuit with a core area densely populated with active devices and with a periphery area less densely populated with active devices as compared to the core area, comprising the steps of: forming a first layer of first insulator material above a semiconductor substrate having a core area and a periphery area, wherein the first insulator material constitutes a polish stop for polishing processes and also as an oxidation barrier; patterning the first layer of first insulator material to expose first portions of the semiconductor substrate substantially only in the core area while using the first insulator material to substantially mask the periphery area; forming a plurality of trenches into the exposed first portions of semiconductor substrate in the core area; filling the plurality of trenches with an insulator; polishing down to the first layer of first insulator material; removing the first layer of first insulator material; forming a second layer of first insulator material over the core and periphery areas; forming openings down into the second layer of first insulator material to expose second portions of the semiconductor substrate substantially only in the periphery area while using the second layer to substantially mask the core area; and forming an isolation region in the exposed second portions of the semiconductor substrate.
摘要:
Memory cells having split charge storage nodes and methods for fabricating memory cells having split charge storage nodes are disclosed. A disclosed method includes forming a first trench and an adjacent second trench in a semiconductor substrate, the first trench and the second trench each defining a first sidewall and a second sidewall respectively and forming a first source/drain region in the substrate and a second source/drain region in the substrate, where the first source/drain region and the second source/drain region are formed substantially under the first trench and the second trench in the semiconductor substrate respectively. Moreover, a method includes forming a bit line punch through barrier in the substrate between the first source/drain region and the second source drain region and forming a first storage element on the first sidewall of the first trench and a second storage element on the second sidewall of the second element. A word line is formed in contact with the first storage element and the second storage element.
摘要:
Dual storage node memory devices and methods for fabricating dual storage node memory devices have been provided. In accordance with an exemplary embodiment, a method includes the steps of etching a plurality of trenches in a semiconductor substrate and forming a layered structure within the trenches. The layered structure includes a tunnel dielectric layer and a charge storage layer. Bit lines are formed within the semiconductor substrate and a layer of conductive material is deposited overlying the layered structure.
摘要:
According to one exemplary embodiment, a method includes planarizing a layer of polysilicon situated over field oxide regions on a substrate to form polysilicon segments, where the polysilicon segments have top surfaces that are substantially planar with top surfaces of the field oxide regions, and where the field oxide regions have a first height and the polysilicon segments have a first thickness. The method further includes removing a hard mask over a peripheral region of the substrate. According to this exemplary embodiment, the method further includes etching the polysilicon segments to cause the polysilicon segments to have a second thickness, which causes the top surfaces of the polysilicon segments to be situated below the top surfaces of the field oxide regions. The polysilicon segments can be etched by using a wet etch process. The polysilicon segments are situated in a core region of the substrate.
摘要:
The present invention discloses a memory device having an improved periphery isolation region and core isolation region. A first trench is formed in a core region. Substrate material bordering the first trench is then oxidized to form a first liner. The first liner is then removed. A second trench is then formed in a periphery region. A second oxidation is then performed such that a second liner is formed from the substrate material bordering the first and second trenches. A dielectric trench fill having substantially uniform density is then deposited in the first and second trenches.
摘要:
A method for filling narrow isolation trenches during a semiconductor fabrication process is disclosed. The semiconductor includes both high-aspect ratio narrow isolation trenches formed in a core area of a substrate, and wide isolation trenches formed in a circuit area of the substrate. After trench formation, a thick liner oxidation is performed in all of the isolation trenches in which a layer of thermal oxide is grown to a thickness sufficient to completely fill the high-aspect ratio narrow isolation trenches. Subsequent to the liner oxidation, the wide isolation trenches are filled with an isolation dielectric, whereby all of the trenches are uniformly filled with minimal voids.
摘要:
A method is provided of forming lines with spaces between memory cells below a minimum printing dimension of a photolithographic tool set. In one aspect of the invention, lines and spaces are formed in a first polysilicon layer that forms floating gates of flash memory cells. STI regions are formed between adjacent memory cells in a substrate to isolate the cells from one another. The first polysilicon layer is deposited over the substrate covering the STI regions. The first polysilicon layer is then planarized by a CMP process or the like to eliminate overlay issues associated with the STI regions. A hard mask layer is deposited over the first polysilicon layer and a first space dimension d1 etched between adjacent memory cells. A conformal nitride layer is deposited over the hard mask layer and an etch step performed to form nitride side walls adjacent the spaces. The nitride side walls reduce the first space dimension to a second space dimension d2, so that spaces can be formed in the first polysilicon layer at a dimension smaller than the minimum printable dimension of the photolithographic tool set.
摘要:
A method for improving the gate coupling in a flash memory core includes forming floating gates of memory element stacks by depositing a first polysilicon layer having relatively small grain size on a tunnel oxide layer and then depositing a second polysilicon layer on the first, the second polysilicon layer being made of relatively large hemispherical-grained (HSG) polysilicon crystals, which improves gate coupling. In contrast, owing to the relatively small size of its grains, the first layer of polysilicon advantageously establishes a relatively flat surface interface with the tunnel oxide layer that is between the memory stacks and the underlying silicon substrate. Conventional control gates are then established above the HSG layer.
摘要:
A method for making a self-aligned isolated flash memory core without damaging tunnel oxide layers between memory element stacks and the silicon substrate supporting the stacks includes depositing three sidewall layers on the stacks, prior to etching isolation trenches between the stacks, to thereby shield the tunnel oxide during isolation trench etching.
摘要:
A dual charge storage node memory device and methods for its fabrication are provided. In one embodiment a dielectric plug is formed comprising a first portion recessed into a semiconductor substrate and a second portion extending above the substrate. A layer of semiconductor material is formed overlying the second portion. A first layered structure is formed overlying a first side of the second portion of the dielectric plug, and a second layered structure is formed overlying a second side, each of the layered structures overlying the layer of semiconductor material and comprising a charge storage layer between first and second dielectric layers. Ions are implanted into the substrate to form a first bit line and second bit line, and a layer of conductive material is deposited and patterned to form a control gate overlying the dielectric plug and the first and second layered structures.