摘要:
In general, this disclosure describes a semiconductor device that exhibits an increased resistance and reduced leakage current in a reverse-biased state, and a method for manufacturing such a semiconductor device. For example, in one embodiment, the increased resistance in the reverse-biased state is obtained by introducing either a P+ or P− type impurity in a polycrystalline silicon layer formed on an N− type epitaxial layer. Additionally, the semiconductor device maintains a low resistance in a forward-biased state. To keep the forward-biased resistance low, the polycrystalline silicon layer in the vicinity of a gate electrode may be of an N+ type. Furthermore, an N+ type source extracting region is formed on the surface of the polycrystalline silicon layer to connect a source electrode to a drain electrode and maintain a low resistance when forward-biased.
摘要:
Embodiments of a battery taught herein are directed to preventing a displacement between bipolar battery stacks or between a bipolar battery stack and an electrode tab. A bonding portion is formed at a part of a contact surface where a collector positioned at both ends in a stacking direction of a bipolar battery stack is bonded to the electrode tabs. The electrode tab and the collector are fixed by such a bonding portion. Further, the bonding portion is formed at a part of a contact surface where adjacent bipolar battery stacks are bonded to each other. Bipolar batteries positioned at upper and lower portions in the stacking direction are fixed by such a bonding portion.
摘要:
Impurity concentration of a second semiconductor region is set such that when a predetermined reverse bias is applied to a heterojunction diode configured by a first semiconductor region and the second semiconductor region, a breakdown voltage at least in a heterojunction region other than outer peripheral ends of the heterojunction diode is a breakdown voltage of a semiconductor device.
摘要:
A semiconductor device, includes: a first conductivity type semiconductor base having a main face; a hetero semiconductor region contacting the main face of the semiconductor base and forming a hetero junction in combination with the semiconductor base, the semiconductor base and the hetero semiconductor region in combination defining a junction end part; a gate insulating film defining a junction face in contact with the semiconductor base and having a thickness; and a gate electrode disposed adjacent to the junction end part via the gate insulating film and defining a shortest point in a position away from the junction end part by a shortest interval, a line extending from the shortest point to a contact point vertically relative to the junction face, forming such a distance between the contact point and the junction end part as to be smaller than the thickness of the gate insulating film contacting the semiconductor base.
摘要:
The present invention provides a wide bandgap semiconductor device encompassing: (a) a drift layer of a first conductivity type made of a wide bandgap semiconductor material; (b) a body region of a second conductivity type made of the wide bandgap semiconductor material, disposed at the top surface of and in the drift layer; (c) a source region of the first conductivity type disposed in the body region; (d) a channel layer of the first conductivity type, disposed in the body region neighboring to the source region and further disposed in the drift layer; and (e) a gate electrode including semiconductor layer at the bottom so that the semiconductor layer directly contact with the top surface of the channel layer, the semiconductor layer made of a semiconductor material having a different bandgap energy from that of the wide bandgap semiconductor material.
摘要:
A conductive film includes a layer 1 formed by a conductive material 1 that includes a polymer material 1 containing any of (1) an amine and an epoxy resin (where the epoxy resin and the amine are mixed in a ratio of 1.0 or more in terms of the ratio of the number of active hydrogen atoms in the amine with respect to the number of functional groups in the epoxy resin), (2) a phenoxy resin and an epoxy resin, (3) a saturated hydrocarbon polymer having a hydroxyl group, and (4) a curable resin and an elastomer and conductive particles 1. The conductive film has excellent stability in an equilibrium potential environment in a negative electrode and low electric resistance per unit area in the thickness direction. A multilayer conductive film including the conductive film achieves excellent interlayer adhesion, and using them as a current collector enables the production of a battery satisfying both weight reduction and durability.
摘要:
In a device for controlling an assembled battery provided with a plurality of single batteries, the device includes a capacity adjustment section for adjusting a capacity such that voltages of the single batteries are equalized at a targeted voltage, an internal state detection section for detecting terminal voltages or SOC of the single batteries and for detecting, based on the detected terminal voltages/SOC, a voltage/SOC difference among the single batteries as voltage-difference/SOC-difference data, and a time-series data storage for storing the voltage-difference/SOC-difference data in time-series. Also provided is a prediction section for more appropriately predicting time when the assembled battery becomes an abnormal state, based on a time-dependent change in the voltage-difference/SOC-difference data detected in a voltage/SOC region different from the targeted voltage by a predetermined voltage, among the stored time-series voltage-difference/SOC-difference data.
摘要:
Disclosed is a battery having an improved life. Specifically disclosed is a battery which comprises an electric power generating element in which one or more unit cell layers are stacked, each being constituted by sequentially laminating or stacking a positive electrode, an electrolyte and a negative electrode; a first collector plate which is provided on the outermost positive electrode surface of the electric power generating element; a second collector plate which is provided on the outermost negative electrode surface of the electric power generating element; a convex or protruding portion provided on the first collector plate and/or the second collector plate with a width that is not less than a half of the width of the end edge of the collector plate; and a terminal which is attached to the convex portion for retrieving electric current from the convex portion.
摘要:
When a bipolar battery is manufactured, a bipolar electrode and a separator are prepared first. Then, one electrode (for example, a positive electrode) out of positive and negative electrodes is applied with such an amount of electrolyte as being exposed on a surface of the one electrode. Then, the separator is arranged on the surface of the one electrode applied with the electrolyte, thus forming a sub-assembly unit. Then, a plurality of the sub-assembly units are layered, and the electrolyte applied to the one electrode is made to permeate through the separator to the other electrode, thus forming an assembly unit.
摘要:
Disclosed is a cell with a power-generating element and an outer package. The power-generating element includes a unit cell layer including a first electrode, a second electrode and an electrolyte layer disposed between the first and second electrodes. In the first electrode, a first collector is provided with one of a positive electrode active material layer and a negative electrode active material layer. In the second electrode, a second collector is provided with the other one of the positive and negative electrode active material layers. The first and second collectors have thicknesses such that when a conductor from outside penetrates at least two cells and a short circuit is formed between two cells via the conductor, shorted portions of the first and second collectors are fused by the heat generated by the current before the temperature of the cells reaches a predetermined value so that the short circuit is blocked.