摘要:
SRAM integrated circuits are provided having pull up and pull down transistors of an SRAM cell fabricated in and on a silicon substrate. A layer of insulating material overlies the pull up and pull down transistors. Pass gate transistors of the SRAM cell are fabricated in a semiconducting layer overlying the layer of insulating material.
摘要:
SRAM integrated circuits are provided having pull up and pull down transistors of an SRAM cell fabricated in and on a silicon substrate. A layer of insulating material overlies the pull up and pull down transistors. Pass gate transistors of the SRAM cell are fabricated in a semiconducting layer overlying the layer of insulating material.
摘要:
A method of manufacturing integrated circuits including a FET with a gate spacer. One embodiment provides forming a lamella of a semiconductor material and two insulator structures on opposing sides of the lamella. The lamella is recessed. A fin is formed from a central portion of the lamella. The fin is thinner than a first and a second portion of the lamella which face each other on opposing sides of the fin. A first spacer structure is formed which encompasses a first portion of the fin, the first portion adjoining to the first lamella portion. A gate electrode is disposed adjacent to the first spacer structure and encompasses a further portion of the fin on a top side and on two opposing lateral sides.
摘要:
A method of making an integrated circuit including doping a fin is disclosed. The method includes providing a substrate having at least one fin of a semiconductor material and carrying out a gas-phase doping of the at least one fin.
摘要:
The present invention provides a manufacturing method for an integrated semiconductor structure comprising the steps of: providing a semiconductor substrate having a plurality of gate stacks in a memory cell region and at least one gate stack in a peripheral device region; forming caps made of one or more layers of a cap material over said plurality of gate stacks in said memory cell region and over said at least one gate stack in said peripheral device region; forming a first contact hole between two neighboring gate stacks in said memory cell region; depositing a first protective layer over said memory cell region and peripheral device region; exposing said cap of said at least one gate stack in said peripheral device region; modifying said exposed cap of said at least one gate stack in said peripheral device region in a process step wherein said first protective layer acts as a mask in said memory cell region; forming a second protective layer over said modified cap in said peripheral device region; partly removing said first and second protective layer in order to bring said first and second protective layer to about a same upper level; removing said first protective layer from said first contact hole; forming at least one another contact hole in said peripheral device region, said at least one another contact hole exposing another contact area which is located either adjacent to said gate stack or in said gate stack in said peripheral device region; and filling said contact hole and said at least one another contact hole with a respective contact plug.
摘要:
On a substrate surface, which has been patterned in the form of a relief, of a substrate, typically of a semiconductor wafer, a deposition process is used to provide a covering layer on process surfaces which are vertical or inclined with respect to the substrate surface. The covering layer is patterned in a direction which is vertical with respect to the substrate surface by limiting a process quantity of at least one precursor material and/or by temporarily limiting the deposition process, and is formed as a functional layer or mask for subsequent process steps.
摘要:
The upper capacitor electrode of the trench capacitor is connected to an epitaxially grown source/drain region of the select transistor by a tubular, monocrystalline Si contact-making region. The gate electrode layer has an oval peripheral contour around the transistor, the oval peripheral contours of the gate electrode layers of memory cells arranged in a row along a word line forming overlap regions in order to increase the packing density.
摘要:
Methods of fabricating an integrated circuit, in particular a dynamic random access memory are described. After forming memory cells on a semiconductor substrate a mirror layer is provided, said mirror layer covering the memory cells. Then logic devices are formed adjoining to said memory cells covered by said mirror layer, said forming of said logic devices including activating the dopants in dopant regions by means of a radiation annealing, said radiation being reflected by said mirror layer. After at least partly removing the mirror layer; a wiring of the memory cells and of the logic devices is formed.
摘要:
Charge-trapping regions are arranged beneath lower edges of the gate electrode separate from one another. Source/drain regions are formed in self-aligned manner with respect to the charge-trapping regions by means of a doping process at low energy in order to form shallow junctions laterally extending only a small distance beneath the charge-trapping regions. The self-alignment ensures a large number of program-erase cycles with high effectiveness and good data retention, because the locations of the injections of charge carriers of opposite signs are narrowly and exactly defined.
摘要:
A multi-layer gate stack structure of a field-effect transistor device is fabricated by providing a gate electrode layer stack with a polysilicon layer, a transition metal interface layer, a nitride barrier layer and then a metal layer on a gate dielectric, wherein the transition metal is titanium, tantalum or cobalt. Patterning the gate electrode layer stack comprises a step of patterning the metal layer and the barrier layer with an etch stop on the surface of the interface layer. Exposed portions of the interface layer are removed and the remaining portions are pulled back from the sidewalls of the gate stack structure leaving divots extending along the sidewalls of the gate stack structure between the barrier layer and the polysilicon layer. A nitride liner encapsulating the metal layer, the barrier layer and the interface layer fills the divots left by the pulled-back interface layer. The nitride liner is opened before the polysilicon layer is patterned. As the requirement for an overetch into the polysilicon layer during the etch of the metal layer, the barrier layer and the interface layer is omitted, the height of the polysilicon layer can be reduced. The aspect ration of the gate stack structure is improved, the feasibility of pattern and fill processes enhanced and the range of an angle under which implants can be performed is extended.