Abstract:
Some embodiments regard a method comprising: generating a current according to a movement of the MEMS device; the movement is controlled by a control signal; generating a peak voltage according to the current; and adjusting the control signal when the peak voltage is out of a predetermined range.
Abstract:
A novel transistor with a low resistance ultra shallow tip region and its method of fabrication in a complementary metal oxide semiconductor (CMOS) process. According to the preferred method of the present invention, a first gate dielectric and a first gate electrode are formed on a first portion of a semiconductor substrate having a first conductivity type, and a second gate dielectric and a said gate electrode are formed on a second portion of semiconductor substrate having a second conductivity type. A silicon nitride layer is formed over the first portion of the semiconductor substrate including the first gate electrode and over the second portion of the semiconductor substrate including the second gate electrode. The silicon nitride layer is removed from the second portion of the silicon substrate and from the top of the second gate electrode to thereby form a first pair of silicon nitride spacers adjacent to opposite sides of the second gate electrode. A pair of recesses are then formed in the second portion of the semiconductor substrate in alignment with the first pair of sidewall spacers. A selectively deposited semiconductor material is then formed in the recesses.
Abstract:
A new method of isolating a polysilicon emitter from the base region of a bipolar transistor, trenching the polysilicon emitter into the semiconductor substrate, and maintaining a consistent base width of a bipolar transistor independent of variations in emitter mask thicknesses is disclosed. The polysilicon emitter isolation provides for better electrical breakdown characteristics between the emitter and the base by protecting the dielectric layer between the polysilicon emitter and base regions from defects and contamination associated with the BiCMOS manufacturing environment. The polysilicon emitter is trenched into the semiconductor substrate in order to reduce transistor operation problems associated with hot electron injection. Consistent base widths improve transistor performance uniformity thereby improving manufacturability and reliability.
Abstract:
A circuit has a first circuit module including a first resistor and first and second transistors coupled in parallel with the first resistor. The first resistor and the first and second transistors are coupled together at a first node. An equivalent resistance across the first circuit module increases as a voltage of the first node is increased from a first voltage to a second voltage, and the equivalent resistance across the first circuit module decreases as the voltage of the first node is increased from the second voltage to a third voltage.
Abstract:
A driver includes a first driver stage having at least one input node and at least one first output node. The first driver stage includes a T-coil structure that is disposed adjacent to the at least one first output node. The T-coil structure includes a first set of inductors each being operable to provide a first inductance. A second set of inductors are electrically coupled with the first set of inductors in a parallel fashion. The second set of inductors each are operable to provide a second inductance. A second driver stage is electrically coupled with the first driver stage.
Abstract:
A method of forming an integrated circuit includes forming at least one transistor over a substrate. The at least one transistor includes a first gate dielectric structure disposed over a substrate. A work-function metallic layer is disposed over the first gate dielectric structure. A conductive layer is disposed over the work-function metallic layer. A source/drain (S/D) region is disposed adjacent to each sidewall of the first gate dielectric structure. At least one resistor structure is formed over the substrate. The at least one resistor structure includes a first doped semiconductor layer disposed over the substrate. The at least one resistor structure does not include any work-function metallic layer between the first doped semiconductor layer and the substrate.
Abstract:
A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
Abstract:
Some aspects of the present disclosure provide for a method of automatically balancing mask misalignment for multiple patterning layers to minimize the consequences of mask misalignment. In some embodiments, the method defines a routing grid for one or more double patterning layers within an IC layout. The routing grid has a plurality of vertical grid lines extending along a first direction and a plurality of horizontal grid lines extending along a second, orthogonal direction. Alternating lines of the routing grid in a given direction (e.g., the horizontal and vertical direction) are assigned different colors. Shapes on the double patterning layers are then routed along the routing grid in a manner that alternates between different colored grid lines. By routing in such a manner, variations in capacitive coupling caused by mask misalignment are reduced.
Abstract:
The present disclosure relates to a resonant clock system having a driver component, a clock load capacitor, and a reconfigurable inductor array. The driver component generates a driven input signal. The clock load capacitor is configured to receive the driven input signal. The inductor array is configured to have an effective inductance according to a selected frequency. The inductor array also generates a resonant signal at the selected frequency using the effective inductance.
Abstract:
A current generator includes an op-amp having a negative terminal arranged to be coupled to an input voltage, a resistance selection circuit having at least one tunable resistor connected with each other, and at least one power transistor. A gate of the at least one power transistor is coupled to an output of the op-amp, and a drain of the at least one power transistor is coupled to the at least one tunable resistor or a load. The resistance selection circuit is configured to select a node of the at least one tunable resistor based on the input voltage for coupling from a positive terminal of the op-amp. The at least one tunable resistor is configured to adjust a resistance setting to control a current level of the current generator based on a power supply voltage or a current of a reference resistor.