摘要:
A solid state lighting luminaire, which comprises a solid state light source, an encapsulated structure, and a first phosphor, is provided. The encapsulated structure encapsulates the solid state light source and has an outside illuminating surface. The first phosphor is patterned to cover a portion of the outside illuminating surface for down-converting the illumination from the solid state light source.
摘要:
A mesoporous silica having adjustable pores is obtained to form a template and thus a three-terminal metal-oxide-semiconductor field-effect transistor (MOSFET) photodetector is obtained. A gate dielectric of a nano-structural silicon-base membrane is used as infrared light absorber in it. Thus, a semiconductor photodetector made of pure silicon having a quantum-dot structure is obtained with excellent near-infrared optoelectronic response.
摘要:
The present invention discloses a transparent conductive nanostructured thin-film by oblique-angle deposition and method of the same. An electron beam system is utilized to evaporate the target source. Evaporation substrate is disposed on a plurality of adjustable sample stage. Multiple gas control valve and heat source is provided to control the gas flow and temperature within the process chamber. An annealing process is performed after the evaporation to improve the thin-film structure and optoelectronic properties.
摘要:
Method for the light emitting diode (LED) having the nanorods-like structure is provided. The LED employs the nanorods are subsequently formed in a longitudinal direction by the etching method and the PEC method. In addition, the plurality of the nanorods is arranged in an array so that provide the LED having much greater brightness and higher light emission efficiency than the conventional LED.
摘要:
A current confinement element that can be used in constructing light-emitting devices. The current confinement element includes a top layer and an aperture-defining layer. The top layer includes a top semiconducting material of a first conductivity type that is transparent to light. The aperture-defining layer includes an aperture region and a confinement region. The aperture region includes an aperture semiconducting material of the first conductivity type that is transparent to light. The confinement region surrounds the aperture region and includes a material that has been doped to provide a high resistance to the flow of current. In one embodiment of the invention, the confinement region includes a semiconducting material of a second conductivity type.
摘要:
A method for fabricating air media layer within the semiconductor optical device is provided. The step of method includes a substrate is provided, a GaN thin film is formed on the substrate, a sacrificial layer is formed on the GaN thin film, and a nitride-containing semiconductor layer is formed on the sacrificial layer. The semiconductor optical device is immersed with an acidic solution to remove the portion of sacrificial layer to form an air media layer around the residual sacrificial layer.
摘要:
A light emitting device with graded composition hole tunneling layer is provided. The device comprises a substrate and an n-type semiconductor layer is disposed on the substrate, in which the n-type semiconductor layer comprises a first portion and a second portion. A graded composition hole tunneling layer is disposed on the first portion of the n-type semiconductor layer. An electron blocking layer is disposed on the graded composition hole tunneling layer. A p-type semiconductor layer is disposed on the electron blocking layer. A first electrode is disposed on the p-type semiconductor layer, and a second electrode is disposed on the second portion of the n-type semiconductor layer and is electrical insulated from the first portion of the n-type semiconductor. The graded composition hole tunneling layer is used as the quantum-well to improve the transport efficiency of the holes to increase the light emitting efficiency of the light emitting device.
摘要:
A method for patterning an epitaxial substrate includes: (a) forming an etch mask layer over an epitaxial substrate, and patterning the etch mask layer using a patterned cover mask layer to form the etch mask layer into a plurality of spaced apart mask patterns; and (b) etching the epitaxial substrate that is exposed from the mask patterns, and removing the mask patterns such that the epitaxial substrate is formed with a plurality of spaced apart substrate patterns.
摘要:
The invention discloses an apparatus for enhancing light absorption of solar cells and photodetectors by diffraction. The invention comprises the structure as the plurality of nano-level well-arranged arrays with a plurality of certain defect areas including the shapes of rod, tapered-cone, and cone, which diffracts incident light to oblique angles for light trapping. Surface reflection can also be reduced for either broadband or narrow band spectral absorption. The increased contact area between the transparent conducting layer and photoactive layer is beneficial for current extraction, which increases the internal quantum efficiency (IQE).
摘要:
A surface-emitting laser device includes: a substrate; a low refractive index layer with a refractive index nL and disposed on the substrate; a light emitting layered structure with a refractive index nH, where nH>nL, the light emitting layered structure being formed on the low refractive index layer and having first and second semiconductor layers and a multi-quantum well (MQW) disposed between the first and second semiconductor layers and capable of generating photons having a wavelength λ0; and a two-dimensional photonic crystal (2DPC) formed in the light emitting layered structure and having optical nanostructures arranged into a periodic pattern with a lattice constant a. The nanostructures extend from the first semiconductor layer through the MQW. The 2DPC has a normalized frequency, which is defined as a/λ0, ranging from 0.25 to 0.70.