Abstract:
A semiconductor device includes a semiconductor substrate, a first semiconductor region of a first semiconductor type, formed within the semiconductor substrate, wherein the first semiconductor region includes a first doped region formed in a lower portion of the first semiconductor region and a second doped region formed over the first doped region in an upper portion of the first semiconductor region. A defect layer having an upper surface formed in an upper portion of the first doped region. A second semiconductor region of a second semiconductor type is formed over the first semiconductor region.
Abstract:
A semiconductor device comprising a bipolar transistor and a method of making the same. A power amplifier including a bipolar transistor. The bipolar transistor includes a collector including a laterally extending drift region. The also includes a base located above the collector. The bipolar transistor further includes an emitter located above the base. The bipolar transistor also includes a doped region having a conductivity type that is different to that of the collector. The doped region extends laterally beneath the collector to form a junction at a region of contact between the doped region and the collector. The doped region has a non-uniform lateral doping profile. A doping level of the doped region is highest in a part of the doped region closest to a collector-base junction of the bipolar transistor.
Abstract:
A circuit, comprising a semiconductor device with one or more field gate terminals for controlling the electric field in a drift region of the semiconductor device; and a feedback circuit configured to dynamically control a bias voltage or voltages applied to the field gate terminal or terminals, with different control voltages used for different semiconductor device characteristics in real-time in response to a time-varying signal at a further node in the circuit.
Abstract:
A semiconductor device and a method of making the same. The device includes a semiconductor substrate. The device also includes a bipolar transistor on the semiconductor substrate. The bipolar transistor includes an emitter. The bipolar transistor also includes a base located above the emitter. The bipolar transistor further includes a laterally extending collector located above the base. The collector includes a portion that extends past an edge of the base.
Abstract:
The invention provides a bipolar transistor circuit and a method of controlling a bipolar transistor, in which the bipolar transistor has a gate terminal for controlling the electric field in a collector region of the transistor. The bias voltage applied to the gate terminal is controlled to achieve different transistor characteristics.
Abstract:
A circuit, comprising a semiconductor device with one or more field gate terminals for controlling the electric field in a drift region of the semiconductor device; and a feedback circuit configured to dynamically control a bias voltage or voltages applied to the field gate terminal or terminals, with different control voltages used for different semiconductor device characteristics in real-time in response to a time-varying signal at a further node in the circuit.