Abstract:
Laser light apparatus for medical treatment to permit amputations, incisions, vaporization of living tissues of an animal such as a human body, thermal therapy and the like. This apparatus consists of a laser light generator, a laser light transmissive probe system and a laser light transmitting system. The laser light transmissive probe system is provided with an opposed pair of laser light transmissive probes. The opposed pair of probes can be controlled by a medical operator so as to be moved into or out of contact with each other at their laser light emitting portions. Laser light is transmitted to the opposed pair of probes from the laser light generator through the laser light transmitting system. Then, a target area of living tissues is pinched by the opposed pair of laser light transmissive probes so as to be disposed between the opposed pair of laser light emitting portions.
Abstract:
The present invention relates to a method of soldering electronic components to each other. When a member to be bonded is soldered to a base material by irradiating the member to be bonded with laser lights, the laser lights are incident upon a laser light transmittable probe and are emitted from the front end of the probe and the front end of the probe is in substantial contact with a solder or the member to be bonded.
Abstract:
Diagnostic apparatus for diagnosing the location and the size and the like of cancer tissues. Laser light emitted from a laser light generator is impinged into a first spectroscope and a specific spectrum can be selected from the impinged laser light by the first spectroscope. This specific spectrum is transmitted to the target area of the tissues by a laser light transmitting system. The transmitted spectrum is reflected at the target area to produce a reflected wave. A spectrum can be selected from the reflected wave by a second spectroscope. This spectrum can be detected by a spectrophotometer. The laser light emitted from the laser light generator can be also irradiated against the target area for carrying out treatment and diagnosis simultaneously.
Abstract:
A laser balloon catheter for emitting in a balloon, laser lights which are transmitted through optical fibers and for irradiating the tissue with the laser lights transmitted through the balloon comprises laser light emitting means having a laser light emitting end of said optical fibers or a laser light transmittable member provided at the emitting end of the optical fibers which receives the laser lights to emit them, a first inflatable balloon provided around said light emitting means for transmitting the laser lights from said emitting means toward the tissue, a first fluid passage for supplying fluid into said first balloon to inflate the same and for discharging the fluid therefrom to deflate the same, a second inflatable balloon provided in front of said first balloon, a second fluid passage for supplying the fluid into said second balloon to inflate the same and for discharging the fluid therefrom to deflate the same.
Abstract:
An apparatus, for laser irradiating and vaporizing the nucleus pulposus of the lumbar intervertebral disc, comprises a hollow needle member; an optical fiber for transmitting a laser light; a lead for detecting the temperature of the nucleus pulposus. The optical fiber and the temperature detecting lead are disposed such that they pass through the needle member adjacent the nucleus pulposus. Insertion is confirmed by ultrasonic diagnosis.
Abstract:
A laser balloon catheter apparatus emits laser light, received through optical fiber, via a balloon for irradiating tissue. It includes a laser light emitting means, a coolant supply passage located in the balloon, a coolant discharge passage located in the balloon for discharging the coolant, and a coolant circulating means for supplying the coolant to the balloon through the coolant supply passage to inflate the balloon while discharging the coolant through the coolant discharge passage.
Abstract:
A cavity in which exciting lamps and a laser rod are disposed is provided in the substantially central position of the section of a cylindrical casing. A heat exchanger comprises a multiplicity of cooling fins which surround the periphery of the cavity are integrally formed of an outer wall so that air paths are formed through and between the cooling fins in an axial direction of the cylindrical casing and coolant is circulated through a space between the cavity and the outer wall. A cooling fan is disposed in the rear of said cylindrical casing for blowing air toward the heat exchanger.
Abstract:
A laser light irradiation apparatus used for medical treatment of living tissue. According to a preferred embodiment, the apparatus comprises a probe and a plural number of optical fibers. The optical fibers surround the axis of the probe. Laser light goes through each optical fiber and is applied to the probe. Then, the laser light is emitted from the probe to be uniformly irradiate the tissues, and if desired, against the tissues over a broad area. Further, a guide wire and/or a lead wire for detecting a temperature can be placed so as to be coaxial with the probe. Therefore, a perforation of a normal part of the blood vessel can be prevented.
Abstract:
A laser light irradiation apparatus for medical treatment of living tissues, a preferred embodiment, comprises a laser light emitter and plurality of optical fibers. The fore end portion of each optical fiber is exposed to form an exposed light emitting core. The exposed cores are surrounded by a clad-material serving as the laser light emitter in order to reduce power loss of the laser light. Also, since there is no space between the emitting face of the optical fiber and the impinging face of the emitter, a cooling fluid is not required to pass through. The laser light is emitted from the emitter to irradiate uniformly against the tissues, and if desired, against the tissues having a broad area. Further, a guide wire and a lead wire detecting a temperature can extend coaxially through the emitter. Therefore, a perforation of a normal part of the blood vessel can be prevented. To provide a more uniform power level distribution of the laser light, the optical fibers at the base portions are twisted.
Abstract:
A laser light emitter is provided for use in a medical treatment, particularly excision of a prominence of an animal organism. The laser light emitter has an excision portion, wherein a part of said excision portion includes a laser light emitting portion which is capable of emitting laser light in the direction for excision of the prominence. The emitter also includes a light emission-intercepting member on the side opposite to the direction for excision of the prominence in order to prevent laser light emission. The laser light emitting portion is optically connected with a laser light generator. By using such a laser light emitter, safe excision of the prominence can be made without giving a shock to the human body or a burn, if laser light is emitted under the presence of a physiological salt solution. In addition, it is possible to remove the prominence while controlling bleeding by regulating the quantity of laser light emission and the ability of hemostasis by laser light.