Abstract:
A crystalline, core-shell hybrid Chabazite (CHA) material for use as a catalyst has a core with a silicon to aluminum ratio (SAR) that is less than 25 and a shell that at least partially encapsulates the core, the shell having an SAR of about 25 or greater. The crystalline, core-shell hybrid Chabazite is prepared by forming a first chabazite (CHA) material having a silicon to aluminum ratio (SAR) that is less than 25, placing the first CHA material into an aqueous reaction mixture comprising one or more precursors capable of forming a second chabazite (CHA) material having an SAR that is 25 or greater, growing the second CHA material on the surface of the first CHA material, and collecting the core-shell hybrid CHA material.
Abstract:
The present disclosure generally provides novel STT-type zeolite materials called PIDC-120501, PIDC-120502, and PIDC-120805/120806 or PIDC-type zeolites and a method of making these zeolites. The present disclosure also provides for the use of these zeolite materials as a catalyst and a method of preparing said catalyst. The PIDC-type zeolites or STT-type zeolite materials may be used as a catalyst, such as in Selective Catalytic Reduction (SCR) applications.
Abstract:
A catalyst support material (D-CZMLA) with oxygen storage capacity corresponds to the formula vD:x(Ce1-wZrwO2):yM:zL:(1-v-x-y-z)Al2O3, wherein w is a molar ratio between 0.1-0.8 and v, x, y, and z are weight ratios, such that v is between 0.005-0.15, x is between 0.05-0.80, and y and z are between 0.001-0.10. M is an interactive promoter for oxygen storage, L is a stabilizer (L) for the Al2O3 support; and D is an oxidizing dopant. The catalyst support material can be incorporated into a wash coat that combines platinum group metals (PGM), an adhesive, and a mixture of (α)RE-Ce—ZrO2+(β)CZMLA+(1−α−β)RE-Al2O3, wherein RE-Ce—ZrO2 is a rare earth element stabilized ceria zirconia having a weight ratio (α) between 0-0.7; CZMLA is the doped catalyst support material having a weight ratio (β) between 0.2-1, such that (α+β)≤1; and RE-Al2O3 is rare earth element stabilized alumina having a weight ratio equal to (1−α−β).
Abstract:
A cell for use in an electrochemical cell, that includes a positive electrode having a current collector, a pre-lithiated active cathode material according to the formula F-1 of Li1+xMn2O4, wherein x is in the range of 0.1 to 1.0, and an optional additional active cathode material; a negative electrode having a current collector and an optional carbonaceous material that exhibits a negligible capacity, wherein negligible capacity is defined as being a reversible capacity ratio between the carbonaceous material and the pre-lithiated active cathode material of
Abstract:
A method of forming an AFX zeolite in a hydrothermal synthesis that exhibits a silica to alumina (SiO2AI2O3) molar ratio (SAR) that is between 8:1 and 26:1; has a morphology that includes one or more of cubic, spheroidal, or rhombic particles with a crystal size that is in the range of about 0.1 micrometer (μm) to 10 μm. This AFX zeolite also exhibits a Brönsted acidity that is in the range of 1.2 mmol/g to 3.6 mmol/g as measured by ammonia temperature programmed desorption. A catalyst formed by substituting a metal into the framework of the zeolite exhibits about a 100% conversion of NO emissions over the temperature range of 300° C. to 650° C.
Abstract:
An inorganic oxide material doped with nano-rare earth oxide particles that is capable of trapping one or more of NOx or SOx at a temperature that is less than 400° C. The nano-rare earth oxide particles have a particle size that is less than 10 nanometers. The catalyst support can trap at least 0.5% NO2 at a temperature less than 350° C. and/or at least 0.4% SO2 at a temperature less than 325° C. The catalyst support can trap at least 0.5% NO2 and/or at least 0.2% SO2 at a temperature that is less than 250° C. after being aged at 800° C. for 16 hours in a 10% steam environment. The catalyst support exhibits at least a 25% increase in capacity for at least one of NOx or SOx trapping at a temperature that is less than 400° C. when compared to a conventional rare earth doped support in a 10% steam environment.
Abstract:
Mesoporous, zirconium-based mixed oxides and a method of making the same comprises: injecting a polyvalent metal-containing solution into an electrolyte solution to form a mother liquor; forming a precipitate; aging the precipitate in the mother liquor to form the mixed oxides; washing the mixed oxides with an aqueous medium; drying and collecting the mixed oxides. The pH of the electrolyte solution exceeds the isoelectric point for zirconium-based mixed oxides. The mixed oxides exhibit a single particle size distribution, improved Ce02 reducibility in the presence of Rhodium, a decrease in surface area after calcination (800-1 100° C.) that is not more than 55%, and a tetragonal/cubic structure after calcination. After calcination at 1 100° C. for 10 hours in air, the mixed oxides exhibit a surface area >25 m2/g, a pore volume >0.20 cm3/g, an average pore size >30 nm, and an average crystallite size between 8-15 nm.
Abstract:
A wash coat is formed by combining platinum group metals (PGM) and an adhesive with a mixture of catalyst support materials according to the relationship (α)RE-Ce—ZrO2+(β)CZMLA+(1−α−β)RE-Al2O3. The RE-Ce—ZrO2 is a commercial material of rare earth elements stabilized ceria zirconia having a weight ratio (α) ranging from 0 to about 0.7; CZMLA is a catalyst support material comprising a core support powder coated with a solid solution and has a weight ratio (β) ranging from about 0.2 to about 1 such that (α+β)≦1. RE-Al2O3 is rare earth element stabilized alumina having a weight ratio equal to (1−α−β). The wash coat exhibits a lower activation temperature compared with traditional wash coat formulations by at least 50° C. This wash coat also requires less RE-Ce—ZrO2 oxide and/or less PGM in the formulation for use as an emission control catalyst for gasoline and diesel engines.
Abstract:
A catalyst support material (D-CZMLA) with oxygen storage capacity corresponds to the formula vD:x(Ce1-wZrwO2):yM:zL:(1−v−x−y−z)Al2O3, wherein w is a molar ratio between 0.1-0.8 and v, x, y, and z are weight ratios, such that v is between 0.005-0.15, x is between 0.05-0.80, and y and z are between 0.001-0.10. M is an interactive promoter for oxygen storage, L is a stabilizer (L) for the Al2O3 support; and D is an oxidizing dopant. The catalyst support material can be incorporated into a wash coat that combines platinum group metals (PGM), an adhesive, and a mixture of (α)RE-Ce—ZrO2+(β)CZMLA+(1−α−β)RE-Al2O3, wherein RE-Ce—ZrO2 is a rare earth element stabilized ceria zirconia having a weight ratio (α) between 0-0.7; CZMLA is the doped catalyst support material having a weight ratio (β) between 0.2-1, such that (α+β)≦1; and RE-Al2O3 is rare earth element stabilized alumina having a weight ratio equal to (1−α−β).