Abstract:
A method for fabricating a magnetic tunnel junction (MTJ) device includes creating a recess within a second patterning layer, in which a first patterning layer overhangs the recessed second patterning layer. Such a method further includes depositing a film into the recess to create a keyhole pattern within the deposited film. The method further includes transferring the keyhole pattern through a hard mask layer to an MTJ stack. The method also includes depositing a conductive material into the transferred keyhole pattern and on an MTJ stack. The method also includes removing the hard mask layer to create a conductive hard mask pillar.
Abstract:
A magnetoresistive random-access memory (MRAM) integration compatible with shrinking device technologies includes a magnetic tunnel junction (MTJ) formed in a common interlayer metal dielectric (IMD) layer with one or more logic elements. The MTJ is connected to a bottom metal line in a bottom IMD layer and a top via connected to a top IMD layer. The MTJ substantially extends between one or more bottom cap layers configured to separate the common IMD layer and the bottom IMD layer and one or more top cap layers configured to separate the common IMD layer and the top IMD layer. The MTJ can include a top electrode to connect to the top via or be directly connected to the top via through a hard mask for smaller device technologies. The logic elements include vias, metal lines, and semiconductor devices.
Abstract:
A method for fabricating a magnetic tunnel junction (MTJ) device includes creating a recess within a second patterning layer, in which a first patterning layer overhangs the recessed second patterning layer. Such a method further includes depositing a film into the recess to create a keyhole pattern within the deposited film. The method further includes transferring the keyhole pattern through a hard mask layer to an MTJ stack. The method also includes depositing a conductive material into the transferred keyhole pattern and on an MTJ stack. The method also includes removing the hard mask layer to create a conductive hard mask pillar.
Abstract:
A method includes patterning a photo resist layer on top of a semiconductor device. The semiconductor device includes a lower portion, a capping layer formed on top of the lower portion, and an optional oxide layer formed on top of the capping layer. The lower portion includes a dielectric material and an interconnect. The method also includes etching portions of the semiconductor device based on the photo resist layer to expose the interconnect. The method further includes depositing a bottom electrode of a resistive memory device on the interconnect. The bottom electrode is comprised of cobalt tungsten phosphorus (CoWP).
Abstract:
A method of fabrication of a device includes forming a first metallization layer that is coupled to a logic device of the device. The method further includes forming a second metallization layer that is coupled to a magnetoresistive random access memory (MRAM) module of the device. The second metallization layer is independent of the first metallization layer.
Abstract:
High aspect ratio vertical interconnect access (via) interconnections in magnetic random access memory (MRAM) bit cells are disclosed. In one aspect, an exemplary MRAM bit cell includes a coupling column interconnecting an access transistor and a magnetic tunnel junction (MTJ) therein. The coupling column is disposed across a plurality of interconnection layers. In one aspect, the coupling column comprises a high aspect ratio via. In another aspect, the high aspect ratio via is connected directly between a drain contact coupled to a drain of the access transistor and to an end electrode of the MTJ such that no interconnection line and/or interconnection island is provided in the coupling column. In certain aspects, the coupling column may be disposed between an interconnection line and an adjacent interconnection line without increasing an existing interconnection line pitch, thus allowing for a reduction in MRAM bit cell pitch.
Abstract:
A magnetoresistive random-access memory (MRAM) integration compatible with shrinking device technologies includes a magnetic tunnel junction (MTJ) formed in a common interlayer metal dielectric (IMD) layer with one or more logic elements. The MTJ is connected to a bottom metal line in a bottom IMD layer and a top via connected to a top IMD layer. The MTJ substantially extends between one or more bottom cap layers configured to separate the common IMD layer and the bottom IMD layer and one or more top cap layers configured to separate the common IMD layer and the top IMD layer. The MTJ can include a top electrode to connect to the top via or be directly connected to the top via through a hard mask for smaller device technologies. The logic elements include vias, metal lines, and semiconductor devices.
Abstract:
Reverse complement MTJ bit cells employing shared source lines are disclosed. In one aspect, a 2T2MTJ reverse complement bit cell employing shared source line is provided. Bit cell includes first MTJ and second MTJ. Value of first MTJ is complement of value of second MTJ. First bit line is coupled to top layer of first MTJ, and first electrode of first access transistor is coupled to bottom layer of first MTJ. Second bit line is coupled to bottom layer of second MTJ, and first electrode of second access transistor is coupled to top layer of second MTJ. Word line is coupled to second electrode of first access transistor and second access transistor. Shared source line is coupled to third electrode of first access transistor and second access transistor. Employing shared source line allows the bit cell to be designed with reduced parasitic resistance.
Abstract:
Magnetic tunnel junction (MTJ) memory bit cells that decouple source line layout from access transistor node size to facilitate reduced contact resistance are disclosed. In one example, an MTJ memory bit cell is provided that includes a source plate disposed above and in contact with a source contact for a source node of an access transistor. A source line is disposed above and in electrical contact with the source plate to electrically connect the source line to the source node. The source plate allows the source line to be provided in a higher metal level from the source and drain contacts of the access transistor such that the source line is not in physical contact with (i.e., decoupled from) the source contact. This allows pitch between the source line and drain column to be relaxed from the width of the source and drain nodes without having to increase contact resistance.
Abstract:
A device includes a first magnetic tunnel junction (MTJ) element having a first read margin and a second MTJ element having a second read margin. The first read margin is greater than twice the second read margin. The device also includes an access transistor coupled between the first MTJ element and the second MTJ element. A gate of the access transistor is coupled to a word line. The first MTJ element, the second MTJ element, and the access transistor form a multi-bit spin torque transfer magnetoresistive random access memory (STT-MRAM) memory cell.