Abstract:
Embodiments of an integrated circuit (IC) comprising circuitry to determine settings for an injection-locked oscillator (ILO) are described. In some embodiments, an injection signal is generated based on a first clock edge of a reference clock signal, and is injected into an ILO. Next, one or more output signals of the ILO are sampled based on a second clock edge of the reference clock signal, and settings for the ILO are determined based on the samples. In some embodiments, a sequence of two or more time-to-digital (TDC) codes is generated based on a reference clock signal and a free-running ILO. In some embodiments, the TDC circuitry that is already present in a delay-locked loop is reused for determining the sequence of two or more TDC codes. The ILO settings can then be determined based on the sequence of two or more
Abstract:
A receiver serial data streams generates a local timing reference clock from an approximate frequency reference clock by phase-aligning the local clock to transitions in the data stream. This process is commonly known as clock and data recovery (CDR). Certain transitions of the data signals are selected for use in phase-aligning the local clock, and certain transitions are ignored. Phase-error signals from multiple receivers receiving the multiple serial data streams are combined and used to make common phase adjustments to the frequency reference clock. These common adjustments track jitter that is common to the received data streams. Local adjustments that better align each respective local clock to the transitions of its respective serial data stream are made using a local phase-error signal. These local adjustments track jitter that is more unique to each of the respective serial data streams.
Abstract:
Circuitry capable of performing fractional clock multiplication by using an injection-locked oscillator is described. Some embodiments described herein perform fractional clock multiplication by periodically changing the injection location, from a set of injection locations, where the injection signal is injected and/or by periodically changing a phase, from a set of phases, of the injection signal that is injected into the ILO.
Abstract:
In a first clock frequency multiplier, multiple injection-locked oscillators (ILOs) having spectrally-staggered lock ranges are operated in parallel to effect a collective input frequency range substantially wider than that of a solitary ILO. After each input frequency change, the ILO output clocks may be evaluated according to one or more qualifying criteria to select one of the ILOs as the final clock source. In a second clock frequency multiplier, a flexible-injection-rate injection-locked oscillator locks to super-harmonic, sub-harmonic or at-frequency injection pulses, seamlessly transitioning between the different injection pulse rates to enable a broad input frequency range. The frequency multiplication factor effected by the first and/or second clock frequency multipliers in response to an input clock is determined on the fly and then compared with a programmed (desired) multiplication factor to select between different frequency-divided instances of the frequency-multiplied clock.
Abstract:
Circuitry capable of performing fractional clock multiplication by using an injection-locked oscillator is described. Some embodiments described herein perform fractional clock multiplication by periodically changing the injection location, from a set of injection locations, where the injection signal is injected and/or by periodically changing a phase, from a set of phases, of the injection signal that is injected into the ILO.
Abstract:
This disclosure provides a split-path equalizer and a clock recovery circuit. More particularly, clock recovery operation is enhanced, particularly at high-signaling rates, by separately equalizing each of a data path and an edge path. In specific embodiments, the data path is equalized in a manner that maximizes signal-to-noise ratio and the edge path is equalized in a manner that emphasizes symmetric edge response for a single unit interval and zero edge response for other unit intervals (e.g., irrespective of peak voltage margin). Such equalization tightens edge grouping and thus enhances clock recovery, while at the same time optimizing data-path sampling. Techniques are also disclosed for addressing split-path equalization-induced skew.
Abstract:
A receiver includes a variable resolution analog-to-digital converter (ADC) and variable resolution processing logic/circuitry. The processing logic may use feed-forward equalization (FFE) techniques to process the outputs from the ADC. When receiving data from a channel having low attenuation, distortion, and/or noise, the ADC and processing logic may be configured to sample and process the received signal using fewer bits, and therefore less logic, than when configured to receiving data from a channel having a higher attenuation, distortion, and/or noise. Thus, the number of (valid) bits output by the ADC, and subsequently processed (e.g., for FFE equalization) can be reduced when a receiver of this type is coupled to a low loss channel. These reductions can reduce power consumption when compared to operating the receiver using the full (i.e., maximum) number of bits the ADC and processing logic is capable of processing.
Abstract:
A communication system comprises a transmitter and a receiver that communicate differential phase modulated data over a wireline channel pair. The transmitter encodes data symbols by generating first and second data signals with differentially phase shifted signal transitions with respect to one another. The receiver receives the first data signal and the second data signal and samples the first data signal based on a signal transition timing of the second data signal to generate a first output data symbol. The receiver furthermore samples the second data signal based on signal transition timing of the first data signal to generate a second output data symbol.
Abstract:
A PAM-4 DFE receives an input signal distorted by inter-symbol interference (ISI) and expressing a series of symbols each representing one of four pulse amplitudes to convey two binary bits of data per symbol. High-order circuitry resolves the most-significant bit (MSB) of each two-bit symbol, whereas low-order circuitry 115 resolves the immediate least-significant bit (LSB). An immediate value of the MSB is used to select a set of ISI offsets used to resolve the LSB. Resolved values of the prior values of the MSB and LSB are then used to select the ISI offset for the immediate symbol.
Abstract:
A communication system comprises a transmitter and a receiver that communicate differential phase modulated data over a wireline channel pair. The transmitter encodes data symbols by generating first and second data signals with differentially phase shifted signal transitions with respect to one another. The receiver receives the first data signal and the second data signal and samples the first data signal based on a signal transition timing of the second data signal to generate a first output data symbol. The receiver furthermore samples the second data signal based on signal transition timing of the first data signal to generate a second output data symbol.