摘要:
A method of forming a gate for a Fin Field Effect Transistor (FinFET) is provided. The method includes forming a first layer of material over a fin and forming a second layer over the first layer. The second layer includes either Ti or TiN. The method further includes forming a third layer over the second layer. The third layer includes an anti-reflective coating. The method also includes etching the first, second and third layers to form the gate for the FinFET.
摘要:
A hardmask stack is comprised of alternating layers of doped amorphous carbon and undoped amorphous carbon. The undoped amorphous carbon layers serve as buffer layers that constrain the effects of compressive stress within the doped amorphous carbon layers to prevent delamination. The stack is provided with a top capping layer. The layer beneath the capping layer is preferably undoped amorphous carbon to reduce photoresist poisoning. An alternative hardmask stack is comprised of alternating layers of capping material and amorphous carbon. The amorphous carbon layers may be doped or undoped. The capping material layers serve as buffer layers that constrain the effects of compressive stress within the amorphous carbon layers to prevent delamination. The top layer of the stack is formed of a capping material. The layer beneath the top layer is preferably undoped amorphous carbon to reduce photoresist poisoning. The lowest layer of the hardmask stack is preferably amorphous carbon to facilitate easy removal of the hardmask stack from underlying materials by an ashing process.
摘要:
A metal gate structure and method of making the same provides a tracer layer over a first metal or metal compound layer. When etching a metal gate, formed of tungsten, for example, with a first etchant chemistry optimized for etching tungsten, detection of the tracer layer through optical emission spectroscopy, for example, indicates the imminent clearing of the tungsten. A second etchant chemistry is then employed that is selective to the first metal or metal compound layer, such as TiN, overlying the gate dielectric. This provides a controlled etching of the TiN and thereby prevents degradation of the underlying gate dielectric material.
摘要:
Various methods of fabricating substrate trenches and isolation structures therein are disclosed. In one aspect, a method of fabricating a trench in a substrate is provided. An oxide/nitride stack is formed on the substrate. An opening with opposing sidewalls is plasma etched in the silicon nitride film until a first portion of the oxide film is exposed while second and third portions of the oxide film positioned on opposite sides of the first portion remain covered by first and second portions of the silicon nitride film that project inwardly from the opposing sidewalls. The oxide film is etched for a selected time period in order to expose a portion of the substrate and to define first and second oxide/nitride ledges that project inwardly from the opposing sidewalls. The substrate is etched to form the trench with the first and second oxide/nitride ledges protecting underlying portions of the substrate.
摘要:
A metal gate structure and method of forming the same employs an etch stop layer between a first metal layer, made of TiN, for example, and the metal gate formed of tungsten. The etch stop layer prevents overetching of the TiN during the etching of the tungsten in the formation of the metal gate. The prevention of the overetching of the TiN protects the gate oxide from undesirable degradation. The provision of aluminum or tantalum in the etch stop layer allows a thin etch stop layer to be used that provides adequate etch stopping capability and does not undesirably affect the work function of the TiN.
摘要:
The present invention is directed to a method of forming semiconductor devices. In one illustrative embodiment, the method comprises defining a photoresist feature having a first size in a layer of photoresist that is formed above a layer of dielectric material. The method further comprises reducing the first size of the photoresist feature to produce a reduced size photoresist feature, forming an opening in the layer of dielectric material under the reduced size photoresist feature, and forming a conductive material in the opening in the layer of dielectric material.
摘要:
A semiconductor device includes a first dielectric layer, a plurality of conductive interconnections formed in the first dielectric layer, a patterned passivation layer formed above the conductive interconnections, and a second dielectric layer formed above and in contact with the passivation layer and the first dielectric layer. A method for forming a semiconductor device includes providing a base layer, forming a first dielectric layer over the base layer, forming a plurality of conductive interconnections in the first dielectric layer, forming a patterned passivation layer above the conductive interconnections, and forming a second dielectric layer above and in contact with the passivation layer and the first dielectric layer.
摘要:
A method of forming an integrated circuit includes providing a buffer layer comprising a dielectric material above a layer of conductive material and providing a layer of mask material above the buffer layer. The mask material comprises amorphous carbon. The method also includes removing a portion of the buffer layer and the layer of mask material to form a mask. A feature is formed in the layer of conductive material according to the mask.
摘要:
A semiconductor device may include a substrate and an insulating layer formed on the substrate. A fin may be formed on the insulating layer. The fin may include a side surface and a top surface, and the side surface may have a orientation. A first gate may be formed on the insulating layer proximate to the side surface of the fin.
摘要:
A non-volatile memory device includes a substrate, an insulating layer, a fin, an oxide layer, spacers and one or more control gates. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The oxide layer is formed on the fin and acts as a tunnel oxide for the memory device. The spacers are formed adjacent the side surfaces of the fin and the control gates are formed adjacent the spacers. The spacers act as floating gate electrodes for the non-volatile memory device.