Abstract:
A method for manufacturing a transistor includes providing a transistor assembly having a semiconductor layer with a first surface, a dielectric layer disposed on the first surface, a gate electrode disposed on the dielectric layer, an insulation layer adjacent at least part of the gate electrode, and a nitride spacer layer adjacent at least part of the insulation layer. The method also includes depositing, on part of the first surface, a material that will react with the semiconductor layer to form silicide and removing the unreacted material. The method further includes etching the nitride spacer layer, depositing a pre-metal spacer layer adjacent at least part of the nitride spacer layer and at least part of the first surface, etch removing a portion of the pre-metal spacer layer to expose part of the silicided portion of the first surface, and forming a contact with the silicided portion of the first surface.
Abstract:
The present invention provides a trench isolation structure, a method of manufacture therefor and a method for manufacturing an integrated circuit including the same. The trench isolation structure (130), in one embodiment, includes a trench located within a substrate (110), the trench having an implanted buffer layer (133) located in the sidewalls thereof. The trench isolation structure (130) further includes a barrier layer (135) located over the implanted buffer layer (133), and fill material (138) located over the barrier layer (135) and substantially filling the trench.
Abstract:
A method of photolithographically forming an integrated circuit feature, such as a conductive structure, for example a gate electrode (15), or such as a patterned insulator feature, is disclosed. A critical dimension (CD) for a photolithography process defines a minimum line width of photoresist or other masking material that may be patterned by the process. A photomask (20, 30, 40, 50, 60) has a mask feature (25, 35, 45, 55, 65) that has varying width portions along its length. The wider portions have a width (L1) that is at or above the critical dimension of the process, while the narrower portions have a width (L2) that is below the critical dimension of the process. In the case of a patterned etch of a conductor, photoexposure and etching of conductive material using the photomask (20, 30, 40, 50, 60) defines a gate electrode (15) for a transistor (10) that has a higher drive current than a transistor having a uniform gate width at the critical dimension.
Abstract:
A method of fabricating different transistor structures with the same mask. A masking layer (214) has two openings (204, 202) that expose two transistor areas (304,302). The width of the second opening (202) is adjusted such that the angled implant is substantially blocked from the second transistor area (302). The angled implant forms pocket regions in the first transistor area (304). The same masking layer (214) may then be used to implant source and drain extension regions in both the first and second transistor areas (304, 302).
Abstract:
High performance digital transistors (140) and analog transistors (144) are formed at the same time. The digital transistors (140) include pocket regions (134) for optimum performance. These pocket regions (134) are partially or completely suppressed from at least the drain side of the analog transistors (144) to provide a flat channel doping profile on the drain side. The flat channel doping profile provides high early voltage and higher gain. The suppression is accomplished by using the HVLDD implants for the analog transistors (144).
Abstract:
A lateral MOSFET (100) and a method for making the same. A two layer raised source/drain region (106) is located adjacent a gate structure (112). The first layer (106a) of the raised source drain is initially doped p-type and the second layer (106b) of the raised source/drain region is doped n-type. P-type dopants from first layer (106a) are diffused into the substrate to form a pocket barrier region (105). N-type dopants from second layer (106b) diffuse into first layer (106a) so that it becomes n-type and into the substrate to form source/drain junction regions (104). P-type pocket barrier region (105) thus provides a barrier between the source/drain junction regions (104) and the channel region (108).
Abstract:
Transistors may be fabricated by isolating a first region (16) of a semiconductor layer from a second region (18) of the semiconductor layer (12). A first disposable gate structure (26) of the first transistor may be formed over the first region (16) of the semiconductor layer (12). The first disposable gate structure (26) may comprise a replaceable material. A second disposable gate structure (28) of the second complementary transistor may be formed over the second region (18) of the semiconductor layer (12). A replacement layer (70) may be formed over the first disposable gate structure (26). The replacement layer (70) may comprise a replacement material. At least a portion of the replaceable material of the first disposable gate structure (26) may be substitutionally replaced with the replacement material of the replacement layer (70) to form a first gate structure (80).
Abstract:
A method for forming a MOSFET (200) using a disposable gate. A disposable gate (220) having at least two materials that may be etched selectively with respect to each other is formed on a substrate (202). A sidewall dielectric (215) is formed on the sidewalls of the disposable gate (220). The composition of the disposable gate materials (222,223, and 224) and the sidewall dielectric (215) are chosen such that the disposable gate (220) may be removed selectively with respect to the sidewall dielectric (215). A dielectric layer (214) is then deposited over the structure and a portion of the dielectric layer (214) is removed to expose the disposable gate (220) (e.g., using CMP or an etch-back). The composition of the dielectric layer (214) is chosen such that (1) the dielectric layer (214) may be removed selectively with respect to the sidewall dielectric (215) and (2) a layer of the disposable gate (220) may be removed selectively with respect to the dielectric layer (214). The disposable gate (220) is then removed and the gate dielectric (210) and gate electrode (212) are formed.
Abstract:
A raised source/drain transistor is provided having thin sidewall spacing insulators (54) adjacent the transistor gate (48). A first sidewall spacer (64) is disposed adjacent thin sidewall spacing insulator (54) and raised source/drain region (60). A second sidewall spacer (66) is formed at the interface between field insulating region (44) and raised source/drain region (60).
Abstract:
A MOS transistor (10) having a thicker silicide layer (50) over a gate (30) than a silicide layer (44) over source and drain regions (42) is disclosed. A process of the present invention forms a first silicide barrier (28) overlying the gate (30) when the gate is formed. Next, a first silicide formation process forms the first silicide layer (44) overlying source and drain regions (42). The silicide barrier layer (28) prevents silicide formation over the gate (30). The silicide barrier (28) is removed, and another silicide barrier (48) is formed over the first silicide layer (44). A second silicide formation process forms the second silicide layer (50) over the gate (30). The silicide barrier layer (48) prevents expansion of the first silicide layer (44).