Abstract:
Semiconductor devices are provided. A semiconductor device includes a channel. The semiconductor device includes a gate structure having first and second portions. The channel is between the first and second portions of the gate structure. A contact structure is adjacent a portion of a side surface of the channel. Related methods of forming semiconductor devices are also provided.
Abstract:
A semiconductor device includes a semiconductor pattern on a substrate along a first direction, a blocking pattern on a top surface of the semiconductor pattern, a first wire pattern on the blocking pattern along a second direction different from the first direction, the first wire including a first part and a second part on opposite sides of the first part, a gate electrode surrounding the first part of the first wire pattern, and a contact surrounding the second part of the first wire pattern, wherein a height of a bottom surface of the contact from a top surface of the substrate is different from a height of a bottom surface of the gate electrode from the top surface of the substrate.
Abstract:
A semiconductor device is provided. A fin is disposed on a substrate. The fin, including a first material and a second material, includes a first fin area and a second fin area. A gate structure is disposed on the first fin area. A source region is in contact with the second fin area. The first fin area includes the first material at a first concentration, the second fin area includes the first material at a second concentration which is greater than the first concentration.
Abstract:
A method of manufacturing a semiconductor device includes patterning a substrate to form an active fin, forming a sacrificial gate pattern crossing over the active fin on the substrate, forming an interlayer insulating layer on the sacrificial gate pattern, removing the sacrificial gate pattern to form a gap region exposing the active fin in the interlayer insulating layer, and oxidizing a portion of the active fin exposed by the gap region to form an insulation pattern between the active fin and the substrate.
Abstract:
A method of fabricating a semiconductor device is provided. A first semiconductor layer including Ge at a first concentration is formed on an insulation layer. Second and third semiconductor layers are formed sequentially on the first semiconductor layer. The second and third semiconductor layers include Ge at second and third concentrations higher than the first concentration. A fin type structure is formed by patterning the insulation layer and the first to third semiconductor layers. The fin type structure is vertically protruded. A fin type active pattern is formed on the fin type structure by performing a first thermal process on the fin type structure. The fin type active pattern includes Ge at a fourth concentration higher than the first concentration and lower than the second concentration.
Abstract:
A method of manufacturing a semiconductor device includes patterning a substrate to form an active fin, forming a sacrificial gate pattern crossing over the active fin on the substrate, forming an interlayer insulating layer on the sacrificial gate pattern, removing the sacrificial gate pattern to form a gap region exposing the active fin in the interlayer insulating layer, and oxidizing a portion of the active fin exposed by the gap region to form an insulation pattern between the active fin and the substrate.
Abstract:
A semiconductor device includes a substrate having a first region and a second region, first and second gate electrodes disposed on the first and second regions, respectively, and first and second source/drain regions disposed on at least one side of the first and second gate electrodes, respectively. The device further includes first and second silicide regions in the first and second source/drain regions, respectively. A contact area between the first silicide region and the first source/drain region is differs in size from a contact area between the second silicide region and the second source/drain region. Methods of fabricating such devices are also provided.
Abstract:
A semiconductor device includes a first transistor, a second transistor and a third transistor provided on a substrate, the first to third transistors respectively including source and drain regions spaced apart from each other, a gate structure extending in a first direction on the substrate and interposed between the source and drain regions, and a channel region connecting the source and drain regions to each other. A channel region of the second transistor and a channel region of the third transistor respectively include a plurality of channel portions, the plurality of channel portions spaced apart from each other in a second direction, perpendicular to an upper surface of the substrate, and connected to the source and drain regions, respectively. A width of a channel portion of the third transistor in the first direction is greater than a width of a channel portion of the second transistor in the first direction.
Abstract:
A semiconductor device includes an insulating layer on a substrate, a channel region on the insulating layer, a gate structure on the insulating layer, the gate structure crossing the channel region, source/drain regions on the insulating layer, the source/drain regions being spaced apart from each other with the gate structure interposed therebetween, the channel region connecting the source/drain regions to each other, and contact plugs connected to the source/drain regions, respectively. The channel region includes a plurality of semiconductor patterns that are vertically spaced apart from each other on the insulating layer, the insulating layer includes first recess regions that are adjacent to the source/drain regions, respectively, and the contact plugs include lower portions provided into the first recess regions, respectively.
Abstract:
A semiconductor device includes an insulating layer on a substrate, a channel region on the insulating layer, a gate structure on the insulating layer, the gate structure crossing the channel region, source/drain regions on the insulating layer, the source/drain regions being spaced apart from each other with the gate structure interposed therebetween, the channel region connecting the source/drain regions to each other, and contact plugs connected to the source/drain regions, respectively. The channel region includes a plurality of semiconductor patterns that are vertically spaced apart from each other on the insulating layer, the insulating layer includes first recess regions that are adjacent to the source/drain regions, respectively, and the contact plugs include lower portions provided into the first recess regions, respectively.