Abstract:
To suppress change in electric characteristics and improve reliability of a semiconductor device including a transistor formed using an oxide semiconductor. A semiconductor device includes a transistor including a gate electrode, a first insulating film, an oxide semiconductor film, a second insulating film, and a pair of electrodes. The gate electrode and the oxide semiconductor film overlap with each other. The oxide semiconductor film is located between the first insulating film and the second insulating film and in contact with the pair of electrodes. The first insulating film is located between the gate electrode and the oxide semiconductor film. An etching rate of a region of at least one of the first insulating film and the second insulating film is higher than 8 nm/min when etching is performed using a hydrofluoric acid.
Abstract:
In a semiconductor device using a transistor including an oxide semiconductor, a change in electrical characteristics is suppressed and reliability is improved. The semiconductor device includes a gate electrode over an insulating surface; an oxide semiconductor film overlapping with the gate electrode; a gate insulating film that is between the gate electrode and the oxide semiconductor film and in contact with the oxide semiconductor film; a protective film in contact with a surface of the oxide semiconductor film that is an opposite side of a surface in contact with the gate insulating film; and a pair of electrodes in contact with the oxide semiconductor film. The spin density of the gate insulating film or the protective film measured by electron spin resonance spectroscopy is lower than 1×1018 spins/cm3, preferably higher than or equal to 1×1017 spins/cm3 and lower than 1×1018 spins/cm3.
Abstract:
A metal oxide film with high electrical characteristics is provided. A metal oxide film with high reliability is provided. The metal oxide film contains indium, M (M is aluminum, gallium, yttrium, or tin), and zinc. In the metal oxide film, distribution of interplanar spacings d determined by electron diffraction by electron beam irradiation from a direction perpendicular to a film surface of the metal oxide film has a first peak and a second peak. The top of the first peak is positioned at greater than or equal to 0.25 nm and less than or equal to 0.30 nm, and the top of the second peak is positioned at greater than or equal to 0.15 nm and less than or equal to 0.20 nm. The distribution of the interplanar spacings d is obtained from a plurality of electron diffraction patterns of a plurality of regions of the metal oxide film. The electron diffraction is performed using an electron beam with a beam diameter of greater than or equal to 0.3 nm and less than or equal to 10 nm.
Abstract:
A semiconductor device having favorable electrical characteristics is provided. A semiconductor device having stable electrical characteristics is provided. A highly reliable semiconductor device is provided. The semiconductor device includes a semiconductor layer, a first insulating layer, and a first conductive layer. The semiconductor layer includes an island-shaped top surface. The first insulating layer is provided in contact with a top surface and a side surface of the semiconductor layer. The first conductive layer is positioned over the first insulating layer and includes a portion overlapping with the semiconductor layer. In addition, the semiconductor layer includes a metal oxide, and the first insulating layer includes an oxide. The semiconductor layer includes a first region overlapping with the first conductive layer and a second region not overlapping with the first conductive layer. The first insulating layer includes a third region overlapping with the first conductive layer and a fourth region not overlapping with the first conductive layer. Furthermore, the second region and the fourth region contain phosphorus or boron.
Abstract:
A semiconductor device having favorable electrical characteristics is provided. A semiconductor device having stable electrical characteristics is provided. A highly reliable semiconductor device is provided. The semiconductor device includes a semiconductor layer, a first insulating layer, and a first conductive layer. The semiconductor layer includes an island-shaped top surface. The first insulating layer is provided in contact with a top surface and a side surface of the semiconductor layer. The first conductive layer is positioned over the first insulating layer and includes a portion overlapping with the semiconductor layer. In addition, the semiconductor layer includes a metal oxide, and the first insulating layer includes an oxide. The semiconductor layer includes a first region overlapping with the first conductive layer and a second region not overlapping with the first conductive layer. The first insulating layer includes a third region overlapping with the first conductive layer and a fourth region not overlapping with the first conductive layer. Furthermore, the second region and the fourth region contain phosphorus or boron.
Abstract:
A metal oxide film with high electrical characteristics is provided. A metal oxide film with high reliability is provided. The metal oxide film contains indium, M (M is aluminum, gallium, yttrium, or tin), and zinc. In the metal oxide film, distribution of interplanar spacings d determined by electron diffraction by electron beam irradiation from a direction perpendicular to a film surface of the metal oxide film has a first peak and a second peak. The top of the first peak is positioned at greater than or equal to 0.25 nm and less than or equal to 0.30 nm, and the top of the second peak is positioned at greater than or equal to 0.15 nm and less than or equal to 0.20 nm. The distribution of the interplanar spacings d is obtained from a plurality of electron diffraction patterns of a plurality of regions of the metal oxide film. The electron diffraction is performed using an electron beam with a beam diameter of greater than or equal to 0.3 nm and less than or equal to 10 nm.
Abstract:
A semiconductor device with favorable electrical characteristics, a semiconductor device with stable electrical characteristics, or a highly reliable semiconductor device or display device is provided. A first insulating layer and a first conductive layer are stacked over a first region of a first metal oxide layer. A first layer is formed in contact with a second metal oxide layer and a second region of the first metal oxide layer that is not overlapped by the first insulating layer. Heat treatment is performed to lower the resistance of the second region and the second metal oxide layer. A second insulating layer is formed. A second conductive layer electrically connected to the second region is formed over the second insulating layer. Here, the first layer is formed to contain at least one of aluminum, titanium, tantalum, and tungsten.
Abstract:
Provided is a semiconductor device with favorable electrical characteristics. Provided is a semiconductor device with stable electrical characteristics. Provided is a manufacturing method of a semiconductor device with a high yield. The manufacturing method includes a first step of forming an insulating film over a substrate, a second step of transferring the substrate in an atmospheric atmosphere, a third step of heating the insulating film, and a fourth step of forming a metal oxide film. The third step and the fourth step are successively performed in an atmosphere where water vapor partial pressure is lower than water vapor partial pressure in the atmospheric air.
Abstract:
To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
Abstract:
A change in electrical characteristics is inhibited and reliability is improved in a semiconductor device including an oxide semiconductor film. The semiconductor device includes a gate electrode, a gate insulating film over the gate electrode, an oxide semiconductor film over the gate insulating film, and a pair of electrodes over the oxide semiconductor film. The oxide semiconductor film includes a channel region and n-type regions in contact with the pair of electrodes. The channel region has fewer oxygen vacancies than the n-type regions.