Abstract:
A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers.
Abstract:
Described herein is a semiconductor integrated device assembly, which envisages: a package defining an internal space; a first die including semiconductor material; and a second die, distinct from the first die, also including semiconductor material; the first die and the second die are coupled to an inner surface of the package facing the internal space. The second die is shaped so as to partially overlap the first die, above the inner surface, with a portion suspended in cantilever fashion above the first die, by an overlapping distance.
Abstract:
A method for testing the hermetic seal of a packaged device, which includes: a package that delimits a device chamber; and a transducer device, which is arranged within the device chamber and generates an electrical signal indicating at least one physical quantity external to the package. The testing method includes the steps of: imposing a reference pressure in the device chamber; arranging the packaged device in a testing chamber in which a testing pressure is present, different from the reference pressure; and subsequently detecting possible pressure variations within the device chamber.
Abstract:
A packaged pressure sensor, comprising: a MEMS pressure-sensor chip; and an encapsulating layer of elastomeric material, in particular PDMS, which extends over the MEMS pressure-sensor chip and forms a means for transferring a force, applied on a surface thereof, towards the MEMS pressure-sensor chip.
Abstract:
A pressure sensor designed to detect a value of ambient pressure of the environment external to the pressure sensor includes: a first substrate having a buried cavity and a membrane suspended over the buried cavity; a second substrate having a recess, hermetically coupled to the first substrate so that the recess defines a sealed cavity the internal pressure value of which provides a pressure-reference value; and a channel formed at least in part in the first substrate and configured to arrange the buried cavity in communication with the environment external to the pressure sensor. The membrane undergoes deflection as a function of a difference of pressure between the pressure-reference value in the sealed cavity and the ambient-pressure value in the buried cavity.
Abstract:
A micro-electro-mechanical device, wherein a platform is formed in a top substrate and is configured to turn through a rotation angle. The platform has a slit and faces a cavity. A plurality of integrated photodetectors is formed in a bottom substrate so as to detect the light through the slit and generate signals correlated to the light through the slit. The area of the slit varies with the rotation angle of the platform and causes diffraction, more or less marked as a function of the angle. The difference between the signals of two photodetectors arranged at different positions with respect to the slit yields the angle.
Abstract:
A MEMS device is provided with: a supporting base, having a bottom surface in contact with an external environment; a sensor die, which is of semiconductor material and integrates a micromechanical detection structure; a sensor frame, which is arranged around the sensor die and is mechanically coupled to a top surface of the supporting base; and a cap, which is arranged above the sensor die and is mechanically coupled to a top surface of the sensor frame, a top surface of the cap being in contact with an external environment. The sensor die is mechanically decoupled from the sensor frame.
Abstract:
Provided is an acoustic transducer including: a semiconductor substrate; a vibrating membrane provided above the semiconductor substrate, including a vibrating electrode; and a fixed membrane provided above the semiconductor substrate, including a fixed electrode, the acoustic transducer detecting a sound wave according to changes in capacitances between the vibrating electrode and the fixed electrode, converting the sound wave into electrical signals, and outputting the electrical signals. At least one of the vibrating electrode and the fixed electrode is divided into a plurality of divided electrodes, and the plurality of divided electrodes outputting the electrical signals.
Abstract:
A packaged sensor assembly includes: a packaging structure, having at least one opening; a humidity sensor and a pressure sensor, which are housed inside the packaging structure and communicate fluidically with the outside through the opening, and a control circuit, operatively coupled to the humidity sensor and to the pressure sensor; wherein the humidity sensor and the control circuit are integrated in a first chip, and the pressure sensor is integrated in a second chip distinct from the first chip and bonded to the first chip.
Abstract:
A pressure sensor designed to detect a value of ambient pressure of the environment external to the pressure sensor includes: a first substrate having a buried cavity and a membrane suspended over the buried cavity; a second substrate having a recess, hermetically coupled to the first substrate so that the recess defines a sealed cavity the internal pressure value of which provides a pressure-reference value; and a channel formed at least in part in the first substrate and configured to arrange the buried cavity in communication with the environment external to the pressure sensor. The membrane undergoes deflection as a function of a difference of pressure between the pressure-reference value in the sealed cavity and the ambient-pressure value in the buried cavity.