摘要:
An improved substrate support and method for operating in which multiple pressure zones are provided on the surface of the substrate support. A seal area is provided between the different zones to allow different gas pressures in the two zones. A higher gas pressure is provided to a zone corresponding to an area of the substrate where greater heat transfer is desired. The gap between the substrate support and the gas pressure are selected to provide the desired amount of heat transfer. Another aspect is limited substrate contact using protrusions, to maximize heat transfer gas flow. A closed loop control system varies the heat transfer gas pressure in accordance with a temperature sensor. For an electrostatic chuck, the dielectric thickness is varied to give a higher electrostatic force at the periphery of the substrate.
摘要:
One embodiment of the present invention is a method of fabricating an integrated circuit. The method includes providing a substrate having a metal and dielectric damascene metallization layer and depositing substantially on the metal a cap. After deposition of the cap, the substrate is cleaned with a solution comprising an amine to provide a pH for the cleaning solution of 7 to about 13. Another embodiment of the presented invention is a method of cleaning substrates. Still another embodiment of the present invention is a formulation for a cleaning solution.
摘要:
Presented are device structures and methods of fabricating three-dimensional integrated circuits that include post-contact back end of line through-hole via integration for the three-dimensional integrated circuits. Another aspect of the present invention includes three-dimensional integrated circuits fabricated according to methods of the present invention.
摘要:
Plasma immersion ion implantation employing a very high RF bias voltage on an electrostatic chuck to attain a requisite implant depth profile is carried out by first depositing a partially conductive silicon-containing seasoning layer over the interior chamber surfaces prior to wafer introduction.
摘要:
Presented are methods of fabricating three-dimensional integrated circuits that include post-contact back end of line through-hole via integration for the three-dimensional integrated circuits. In one embodiment, the method comprises forming metal plug contacts through a hard mask and a premetal dielectric to transistors in the semiconductor. The method also includes etching a hole for a through-hole via through the hard mask to the semiconductor using a patterned photoresist process, removing the patterned photoresist and using a hard mask process to etch the hole to an amount into the semiconductor. The method further includes depositing a dielectric liner to isolate the hole from the semiconductor, depositing a gapfill metal to fill the hole, and planarizing the surface of the substrate to the hard mask. Another aspect of the present invention includes three-dimensional integrated circuits fabricated according to methods of the present invention.
摘要:
Compositions and methods for removal of barrier layer materials by a chemical mechanical polishing technique are provided. In one aspect, the invention provides a composition adapted for removing a barrier layer material in a chemical mechanical polishing technique including at least one reducing agent selected from the group of bicarboxylic acids, tricarboxylic acids, and combinations thereof, at least one reducing agent selected from the group of glucose, hydroxylamine, and combinations thereof, and deionized water, wherein the composition has a pH of about 7 or less. The composition may be used in a method for removing the barrier layer material including applying the composition to a polishing pad and polishing the substrate in the presence of the composition to remove the barrier layer.
摘要:
Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
摘要:
A polishing pad is cleaned of Cu CMP by-products, subsequent to planarizing a wafer, to reduce pad-glazing by applying to the polishing pad surface a composition comprising about 0.1 to about 3.0 wt. % of at least one organic compound having one or more amine or amide groups, an acid or a base in an amount sufficient to adjust the pH of the composition to about 5.0 to about 12.0, the remainder water. Embodiments comprise ex situ cleaning of a rotating polishing pad by applying a solution having a pH of about 5.0 to about 12.0 at a flow rate of about 100 to about 600 ml/min. for about 3 to about 20 seconds after polishing a wafer having a Cu-containing surface and then removing the cleaning solution from the polishing pad by high pressure rinsing with water.
摘要:
A polishing article for chemical mechanical polishing. The polishing article includes a generally elongated polishing sheet with a polishing surface. The polishing article is formed from a material that is substantially opaque, and has a discrete region extending substantially the length of the polishing sheet that is at least semi-transparent.
摘要:
Methods and apparatus for processing substrates to improve polishing uniformity, improve planarization, remove residual material and minimize defect formation are provided. In one aspect, a method is provided for processing a substrate having a conductive material and a low dielectric constant material disposed thereon including polishing a substrate at a polishing pressures of about 2 psi or less and at platen rotational speeds of about 200 cps or greater. The polishing process may use an abrasive-containing polishing composition having up to about 1 wt. % of abrasives. The polishing process may be integrated into a multi-step polishing process.