Abstract:
A computer-implemented method includes fetching a fetch-packet containing a first hyper-block from a first address of a memory, the fetch-packet containing a bitwise distance from an entry point of the first hyper-block to a predicted exit point; executing a first branch instruction of the first hyper-block, wherein the first branch instruction corresponds to a first exit point, and wherein the first branch instruction includes an address corresponding to an entry point of a second hyper-block; storing, responsive to executing the first branch instruction, a bitwise distance from the entry point of the first hyper-block to the first exit point; and moving a program counter from the first exit point of the first hyper-block to the entry point of the second hyper-block.
Abstract:
Techniques related to executing a plurality of instructions by a processor comprising receiving a first instruction for execution on an instruction execution pipeline, wherein the instruction execution pipeline is in a first execution mode, and wherein the first instruction is configured to utilize a first memory location, begin execution of the first instruction on the instruction execution pipeline, receiving an execution mode instruction to switch the instruction execution pipeline to a second execution mode, switching the instruction execution pipeline to the second execution mode based on the received execution mode instruction, receiving a second instruction for execution on the instruction execution pipeline, the second instruction configured to utilize the first memory location, determining that the first instruction and the second instruction utilize the first memory location, and stalling execution of the second instruction based on the determining.
Abstract:
Techniques related to executing a plurality of instructions by a processor comprising receiving a first instruction for execution on an instruction execution pipeline, beginning execution of the first instruction, receiving one or more second instructions for execution on the instruction execution pipeline, the one or more second instructions associated with a higher priority task than the first instruction, storing a register state associated with the execution of the first instruction in one or more registers of a capture queue associated with the instruction execution pipeline, copying the register state from the capture queue to a memory, determining that the one or more second instructions have been executed, copying the register state from the memory to the one or more registers of the capture queue, and restoring the register state to the instruction execution pipeline from the capture queue.
Abstract:
This invention is a bus communication protocol. A master device stores bus credits. The master device may transmit a bus transaction only if it holds sufficient number and type of bus credits. Upon transmission, the master device decrements the number of stored bus credits. The bus credits correspond to resources on a slave device for receiving bus transactions. The slave device must receive the bus transaction if accompanied by the proper credits. The slave device services the transaction. The slave device then transmits a credit return. The master device adds the corresponding number and types of credits to the stored amount. The slave device is ready to accept another bus transaction and the master device is re-enabled to initiate the bus transaction. In many types of interactions a bus agent may act as both master and slave depending upon the state of the process.
Abstract:
A streaming engine employed in a digital data processor specifies a fixed read only data stream defined by plural nested loops. An address generator produces addresses of data elements. A steam head register stores data elements next to be supplied to functional units for use as operands. Stream metadata is stored in response to a stream store instruction. Stored stream metadata is restored to the stream engine in response to a stream restore instruction. An interrupt changes an open stream to a frozen state discarding stored stream data. A return from interrupt changes a frozen stream to an active state.
Abstract:
This invention is a bus communication protocol. A master device stores bus credits. The master device may transmit a bus transaction only if it holds sufficient number and type of bus credits. Upon transmission, the master device decrements the number of stored bus credits. The bus credits correspond to resources on a slave device for receiving bus transactions. The slave device must receive the bus transaction if accompanied by the proper credits. The slave device services the transaction. The slave device then transmits a credit return. The master device adds the corresponding number and types of credits to the stored amount. The slave device is ready to accept another bus transaction and the master device is re-enabled to initiate the bus transaction. In many types of interactions a bus agent may act as both master and slave depending upon the state of the process.
Abstract:
To enable efficient tracking of transactions, an acknowledgement expected signal is used to give the cache coherent interconnect a hint for whether a transaction requires coherent ownership tracking. This signal informs the cache coherent interconnect to expect an ownership transfer acknowledgement signal from the initiating master upon read/write transfer completion. The cache coherent interconnect can therefore continue tracking the transaction at its point of coherency until it receives the acknowledgement from the initiating master only when necessary.
Abstract:
This invention is a digital signal processor form plural sums of absolute values (SAD) in a single operation. An operational unit performing a sum of absolute value operation comprising two sets of a plurality of rows, each row producing a SAD output. Plural absolute value difference units receive corresponding packed candidate pixel data and packed reference pixel data. A row summer sums the output of the absolute value difference units in the row. The candidate pixels are offset relative to the reference pixels by one pixel for each succeeding row in a set of rows. The two sets of rows operate on opposite halves of the candidate pixels packed within an instruction specified operand. The SAD operations can be performed on differing data widths employing carry chain control in the absolute difference unit and the row summers.
Abstract:
Techniques related to executing a plurality of instructions by a processor comprising a method for executing a plurality of instructions by a processor. The method comprises detecting a pipeline hazard based on one or more instructions provided for execution by an instruction execution pipeline, beginning execution of an instruction, of the one or more instructions on the instruction execution pipeline, stalling a portion of the instruction execution pipeline based on the detected pipeline hazard, storing a register state associated with the execution of the instruction based on the stalling, determining that the pipeline hazard has been resolved, and restoring the register state to the instruction execution pipeline based on the determination.
Abstract:
A computer-implemented method includes fetching a fetch-packet containing a first hyper-block from a first address of a memory. The fetch-packet contains a bitwise distance from an entry point of the first hyper-block to a predicted exit point. A first branch instruction of the first hyper-block is executed that corresponds to a first exit point. The first branch instruction includes an address corresponding to an entry point of a second hyper-block. Responsive to executing the first branch instruction, a bitwise distance from the entry point of the first hyper-block to the first exit point is stored. A program counter is moved from the first exit point of the first hyper-block to the entry point of the second hyper-block.