Abstract:
In a multi-cylinder internal combustion engine having throttle valves to be opened and closed by electric motors, output control is enabled in various ways according to the state of usage of an object to be driven by the multi-cylinder internal combustion engine with a simple structure with the scope of application of shared components being expanded to reduce the cost. In addition, a throttle body assembly is downsized in the direction of the arrangement of the cylinders. A multi-cylinder internal combustion engine includes a predetermined number of cylinders, a throttle body assembly including the throttle bodies formed with intake-air channels and throttle valves. The respective throttle valves are opened and closed by the electric motors provided independently for each throttle valve. Air-intake ports of the first and fourth cylinders are formed so as to approach a center plane in the direction of the arrangement as they approach entrances.
Abstract:
To provide a high performance four-stroke internal combustion engine wherein an increase in a side of a cylinder head is prevented and a valve resting mechanism is provided for a valve lifter. In a four-stroke internal combustion engine with a valve resting mechanism includes a valve lifter having a valve resting mechanism interposed between a valve motion cam and a stem of a poppet valve and a valve lifter spring is provided for biasing the valve lifter in a direction in which the valve lifter is normally held in contact with the valve motion cam. A slide pin holder is pressed against the valve lifter by a spring force of the valve lifter spring that is provided on the valve lifter while a shim portion having a predetermined thickness for controlling a relative positional relationship with the valve lifter is formed integrally with a valve lifter top wall. One of a plurality of predetermined valve lifters most suitable for the relative positional relationship between the slide pin holder and the valve lifter is selectively mounted to effect a tappet gap adjustment.
Abstract:
To provide an engine with a valve resting function for resting at least one of a plurality of intake valves when the engine is in a specific operational region, which is capable of preventing the flow-in of the remaining fuel in a combustion chamber when the rested intake valve is switched to be opened/closed, thereby preventing the reduction in engine output and the increase in unburned hydrocarbon. A communication passage is provided in a cylinder head for enabling a fuel-air mixture to flow from an intake passage corresponding to an intake valve in a resting state to an intake passage corresponding to an intake valve in a resting state, when said engine is in a specific operational region.
Abstract:
A four-stroke cycle internal-combustion engine having two large- and small-diameter intake valves and two large- and small-diameter exhaust valves in one cylinder and mounted with a valve-operating mechanism on either of the intake valve side and the exhaust valve side. Each valve-operating mechanism comprises a first valve-operating cam of a narrow total valve-opening angle and a low lift, a second valve-operating cam of a wide total valve-opening angle and a high lift, a rocker arm for the small-diameter valve in direct engagement with the first valve-operating cam, a rocker arm for the large-diameter valve, and a connecting means capable of simultaneously operatively connecting the second valve-operating cam with the rocker arm for the small-diameter valve and the rocker arm for the large-diameter valve. In each cylinder at least three spark plugs are mounted. The combustion chamber is formed high on one side and low on the other side.
Abstract:
An electronic throttle control device in a internal combustion engine for a vehicle can be improved in maintainability and can be reduced in size. An electronic throttle control device in a V-type internal combustion engine for a vehicle has a fuel injection valve and throttle valves in an intake passage. A throttle driving motor controls the opening angle of each throttle valve according to the amount of operation of a throttle grip performed by an operator of the vehicle. The throttle driving motor is located outside a region surrounded by the throttle bodies that are respectively connected to all of intake ports as viewed in plan.
Abstract:
In a variable valve timing mechanism, a valve-lifting cam member is fitted, slidably in the circumferential direction, onto a camshaft that is driven to rotate in synchronization with a crankshaft of a four-stroke cycle internal combustion engine. An eccentric collar is set between a driving collar fixed on the camshaft and the valve-lifting cam member. A driving projection is formed in the driving collar and engages with one of sandwiching portions of the eccentric collar. A driven protrusion is formed in the valve-lifting cam member and engages with another one of the sandwiching portions of the eccentric collar. A linkage mechanism includes the eccentric collar, the drive, and the driven protrusions. The variable valve timing mechanism adjusts the timing of opening and closing of the valve while the rotational phase of the valve-lifting cam member is cyclically varied relative to the camshaft by the eccentricity of the eccentric collar.
Abstract:
In a multi-cylinder engine provided with a cylinder pausing function, a hydraulically-operated valve-pausing mechanism is capable of selectively suspending operation of at least one intake or exhaust valve of one or more selected cylinders, depending on engine operating conditions, such that the suspended valve is temporarily held in a closed state. A hydraulic-pressure control device, for controlling hydraulic pressure supplied to the valve-pausing mechanism, is disposed on an engine body so as to minimize an amount of protrusion of the hydraulic-pressure control device from the engine body, while situating the hydraulic-pressure control device near the valve-pausing mechanism. A recess portion is formed on an external surface of a cylinder head or a head cover, and the hydraulic-pressure control device is disposed on the engine such that at least part of the hydraulic-pressure control device is accommodated in the recess portion.
Abstract:
In a V-type engine for a vehicle, in which a hydraulic valve rest mechanism which selectively holds at least one of an intake valve and an exhaust valve corresponding to a part of plural cylinders in a valve-closed rest state in correspondence with a vehicle running status is provided in a valve actuation unit, and a hydraulic controller which controls hydraulic pressure of the valve rest mechanism is provided in a main engine body, to reduce the distance of oil passage from the hydraulic controller to the hydraulic valve rest mechanism and simplify the structure of the oil passage. A hydraulic controller is provided on at least one side surface of a cylinder head, and may be generally oriented along a line which is substantially parallel to a central axis of a cylinder bore.
Abstract:
A multicylinder engine for a motorcycle includes a valve actuation mechanism having a hydraulically-operated valve pausing mechanism for holding at least one of an intake valve and an exhaust valve of selected cylinders in a suspended state. The valve actuation mechanism operates the intake valve and the exhaust valve, and controls flow of oil through an oil passage which introduces working oil to the valve pausing mechanism from a hydraulic-pressure control device. Air-bleeding holes are formed in the cylinder head. The air-bleeding holes are fluidly connected with portions of the oil passages that are located at a highest level in the oil passages while the motorcycle is parked in an inclined state with its side stand down.
Abstract:
A multicylinder internal combustion engine, which can simplify its control and is advantageous against thermal loads or vibrations includes a cylinder head with intake valves and exhaust valves arranged therein. Valve actuators are provided for openably operating the intake valves and exhaust valves, respectively. A cylinder head cover forms, in combination with the cylinder head, a valve actuator chamber with the valve actuators accommodated therein. At least some of the valve actuators are deactivatable to disable their corresponding cylinders. The multicylinder internal combustion engine is a V-shaped internal combustion engine provided with a front bank and rear bank. The cylinders on opposite ends in a direction of a crankshaft are set as full-time operating cylinders.