摘要:
Circuitry for receiving a high-speed serial data signal (e.g., having a bit rate in the range of about 10 Gpbs and higher) includes a two-stage, continuous-time, linear equalizer having only two serially connected stages. Phase detector circuitry may be provided for receiving the serial output of the equalizer and for converting successive pairs of bits in that output to successive parallel-form bit pairs. Further demultiplexing circuitry may be provided to demultiplex successive groups of the parallel-form bit pairs to final groups of parallel bits, which can be quite large in terms of number of bits (e.g., 64 parallel bits). Another aspect of the invention relates to multiplexer circuitry for efficiently going in the opposite direction from such relatively large groups of parallel data bits to a high-speed serial data output signal.
摘要:
A loss-of-signal detector includes digital and analog monitoring of incoming data. The incoming signal is compared digitally to at least one predetermined pattern that may indicate a loss of signal, and also is monitored by an analog detector that detects transitions in the data. If the digital comparison fails to match any of the at least one predetermined pattern, or if transitions are detected by the analog monitoring, even if the digital comparison produces a pattern match, then loss of signal is not indicated.
摘要:
A high-speed serial interface for a programmable logic device includes a plurality of features to handle the various issues that may arise with data rates over 1 Gbps and particularly over 1.25 Gbps. Those features may include dynamic phase alignment to control clock-data skew, data realignment (e.g., bit slip circuitry) to account for channel-to-channel skew, full-duplex serializer and deserializer, out-of-range frequency support for low frequencies, and a soft-CDR mode.
摘要:
Voltage controlled oscillator (VCO) circuitry with low phase noise and a wide range of operating frequencies is presented. The VCO circuitry includes circuitry with two or more VCO sub-circuits, each sub-circuit being optimized to produce output clock signals with low phase noise and with frequencies in a different range. Sub-circuits with gear inputs may be operative to produce output clock signals in a lower range of frequencies, while sub-circuits optimized for high speed operation may be used to produce output signals in a higher range of frequencies. A control circuit may be used to produce a control signal coupled to all sub-circuits. The control signal may set the operating frequency of the sub-circuits.
摘要:
A bias circuit includes a digital to analog converter (D2A) generating an output representing a voltage level for tuning an analog signal. The D2A is coupled to a primary register frame that includes a plurality of register frames that are serially linked. The bias circuit includes a decoder also coupled to the primary register frame. An output enable logic module is also included. The output enable logic module determines when the primary register has a complete data set as the data is shifted into the primary register frame from a memory region that may be a ROM, RAM, soft IP of a PLD, an intelligent host or tester serial data input stream. A method for adjusting a signal through a bias circuit is also provided.
摘要:
Systems and methods are provided using common-mode-voltage bias circuitry to make common-mode-voltage adjustments to differential driver circuitry in integrated circuit differential communications links. Adjustable bias circuitry may be controlled using static and dynamic control signals. Dynamic control signals can be produced by core logic on a programmable logic device or other integrated circuit. Static control signals can be produced by programmable elements. Bias circuit adjustments made at one end of a differential link can be used to improve performance at either end of the link or can be used to improve power consumption or to balance power and performance considerations. The same integrated circuit design can be used in both AC-coupled and DC-coupled environments. The bias circuitry can be formed from an adjustable current source and adjustable resistor. The current source and adjustable resistors can be controlled by the same control signals.
摘要:
Data signals transmitted over transmission media suffer from attenuation caused by the transmission media. Equalization circuitry may be provided to compensate for attenuation caused by the transmission media. Equalization circuitry may include multiple stages arranged in series to allow the frequency responses of the stages to aggregate together. Each stage may be programmable to insert a zero, which causes the frequency response of the stage to increase in magnitude by 20 dB/decade. The frequency location of the zero may also be programmable to allow each stage to contribute a certain amount of gain for a specific frequency. Each stage may also be programmable to determine the location of poles for reduction of high frequency noise and cross-talk cancellation.
摘要:
A programmable logic device (PLD) includes a circuit that controls a supply voltage of at least a portion of the circuitry within the PLD (such as a block, a sub-block, or a region). The circuit also filters noise within the PLD. Controlling the supply voltage allows trading off various performance characteristics, such as speed and power consumption.
摘要:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.
摘要:
Various embodiments for implementing circuits and systems with highly flexible interface circuitry that is capable of realizing programmable on-chip termination and DC level control. A number of techniques use existing I/O resources to implement programmable on-chip termination and DC level control that enable an integrated circuit to meet a variety of different high speed single-ended and differential I/O standards.