Abstract:
In one aspect, methods of preparing composite nanoparticle compositions are described herein. For example, in some embodiments, a method comprises providing a zein solution stream, an organic fluid stream including at least one additive and at least one buffer fluid stream. The zein solution stream, organic fluid stream and buffer fluid stream are delivered to a chamber for mixing at one or more rates sufficient to flash precipitate composite nanoparticles including the additive encapsulated by a shell comprising the zein.
Abstract:
Microbial infections have become increasingly difficult to treat due to the emergence of drug resistant microbes. Adjunctive therapies can be used to better treat resistant microbes, where multiple drugs are concurrently used to overcome resistant mechanisms and to synergistically treat infections. The practice of adjunctive therapies is limited by the ability to precisely control the pharmacokinetic profiles of the multiple actives. Composite particle-based approaches to enable and enhance adjunctive antimicrobial infections by simultaneous encapsulation and delivery of all components are described herein.
Abstract:
The American Cancer Society estimated that in 2009, 1,479,350 new cancer cases would be diagnosed in the United States of which 219,440 would be lung and bronchus related. The standard treatments for NSCLC include surgery, chemotherapy, radiation, laser and photodynamic therapy, all with various success rates depending on the stage of the cancer. National Cancer Institute assesses, however, that results of standard treatment are generally poor with only a 15 percent 5-year survival rate for combined cancer stages. Challenges facing the current chemotherapy drugs include excessive toxicity to healthy tissues and limited ability to prevent metastases. A dual drug delivery system described herein selectively targets the lung to deliver anti-cancer drugs and inhibit the formation of metastases.
Abstract:
A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 wt %, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 m2/g to 2630 m2/g; and a method for producing the nanocomposite and uses thereof.
Abstract:
A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 m2/g to 2600 m2/g, and a method of making the same.
Abstract:
Particulate constructs stabilized by amphiphilic copolymers and comprising at least one active coupled to a hydrophobic moiety provide sustained release of the active in both in vitro and in vivo environments.