Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
Abstract:
A transistor includes a semiconductor channel layer, a gate structure, a gate insulation layer, an internal electrode, and a ferroelectric material layer. The gate structure is disposed on the semiconductor channel layer. The gate insulation layer is disposed between the gate structure and the semiconductor channel layer. The internal electrode is disposed between the gate insulation layer and the gate structure. The ferroelectric material layer is disposed between the internal electrode and the gate structure. A spacer is disposed on the semiconductor channel layer, and a trench surrounded by the spacer is formed above the semiconductor channel layer. The ferroelectric material layer is disposed in the trench, and the gate structure is at least partially disposed outside the trench. The ferroelectric material layer in the transistor of the present invention is used to enhance the electrical characteristics of the transistor.
Abstract:
A method for fabricating substrate of a semiconductor device is disclosed. The method includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
Abstract:
A sense amplifier circuit includes a sense amplifier, a switch and a temperature compensation circuit. The temperature compensation circuit provides a control signal having a positive temperature coefficient, based on which the switch provides reference impedance for temperature compensation. The sense amplifier includes a first input end coupled to a target bit and a second input end coupled to the switch. The sense amplifier outputs a sense amplifier signal based on the reference impedance and the impedance of the target bit.
Abstract:
The present invention provides a spin-orbit torque magnetic random access memory (SOT-MRAM) circuit, including a read transistor pair with two read transistors in parallel, a write transistor pair with two write transistors in parallel, a SOT memory cell with a magnetic tunnel junction (MTJ) and a SOT layer, wherein one end of the MTJ is connected to the source of the read transistor pair and the other end of the MTJ is connected to the SOT layer, and one end of the SOT layer is connected to a source line and the other of the SOT layer is connected to the source of the write transistor pair, a read bit line is connected to the drain of the read transistor pair and a write bit line is connected to the drain of the read transistor.
Abstract:
A MRAM circuit structure is provided in the present invention, with the unit cell composed of three transistors in series and four MTJs, wherein the junction between first transistor and third transistor is first node, the junction between second transistor and third transistor is second node, and the other ends of first transistor and third transistor are connected to a common source line. First MTJ is connected to second MTJ in series to form a first MTJ pair that connecting to the first node, and third MTJ is connected to fourth MTJ in series to form a second MTJ pair that connecting to the second node.
Abstract:
A semiconductor device includes a PMOS region and a NMOS region on a substrate, a first fin-shaped structure on the PMOS region, a first single diffusion break (SDB) structure in the first fin-shaped structure, a first gate structure on the first SDB structure, and a second gate structure on the first fin-shaped structure. Preferably, the first gate structure and the second gate structure are of different materials and the first gate structure disposed directly on top of the first SDB structure is a polysilicon gate while the second gate structure disposed on the first fin-shaped structure is a metal gate in the PMOS region.
Abstract:
A layout pattern for magnetoresistive random access memory (MRAM) includes a first magnetic tunneling junction (MTJ) pattern on a substrate, a second MTJ pattern adjacent to the first MTJ pattern, and a third MTJ pattern between the first MTJ pattern and the second MTJ pattern. Preferably, the first MTJ pattern, the second MTJ pattern, and the third MTJ pattern constitute a staggered arrangement.
Abstract:
A first MRAM set includes a first transistor and a second transistor. The first transistor includes a first gate structure, a first source/drain doping region and a first common source/drain doping region. The second transistor includes a second gate structure, a second source/drain doping region and the first common source/drain doping region. A second MTJ is disposed on the second transistor. The first common source/drain doping region electrically connects to the second MTJ. A first MTJ is disposed on the first transistor. The sizes of the first MTJ and the second MTJ are different. The second MTJ connects to the first MTJ in series. A bit line electrically connects the first MTJ. A source line electrically connects to the first source/drain doping region and the second source/drain doping region.