摘要:
The present invention relates to an FET device having a conductive gate electrode with angled sidewalls. Specifically, the sidewalls of the FET device are offset from the vertical direction by an offset angle that is greater than about 0° and not more than about 45°. In such a manner, such conductive gate electrode has a top surface area that is smaller than its base surface area. Preferably, the FET device further comprises source/drain metal contacts that are also characterized by angled sidewalls, except that the offset angle of the source/drain metal contacts are arranged so that the top surface area of each metal contact is larger than its base surface area. The FET device of the present invention has significantly reduced gate to drain metal contact overlap capacitance, e.g., less than about 0.07 femtoFarads per micron of channel width, in comparison with conventional FET devices having straight-wall gate electrodes and metal contacts.
摘要:
The present invention relates to an field effect transistor (FET) comprising an inverted source/drain metallic contact that has a lower portion located in a first, lower dielectric layer and an upper portion located in a second, upper dielectric layer. The lower portion of the inverted source/drain metallic contact has a larger cross-sectional area than the upper portion. Preferably, the lower portion of the inverted source/drain metallic contact has a cross-sectional area ranging from about 0.03 μm2 to about 3.15 μm2, and such an inverted source/drain metallic contact is spaced apart from a gate electrode of the FET by a distance ranging from about 0.001 μm to about 5 μm.
摘要:
An integrated circuit structure is disclosed that has a layer of logical and functional devices and an interconnection layer above the layer of logical and functional devices. The interconnection layer has a substrate, conductive features within the substrate and caps positioned only above the conductive features.
摘要:
A dual damascene interconnect structure having a patterned multilayer of spun-on dielectrics on a substrate is provided. The structure includes: a patterned multilayer of spun-on dielectrics on a substrate, including: a cap layer; a first non-porous via level low-k dielectric layer having thereon metal via conductors with a bottom portion and sidewalls; an etch stop layer; a first porous low-k line level dielectric layer having thereon metal line conductors with a bottom portion and sidewalls; a polish stop layer over the first porous low-k dielectric; a second thin non-porous low-k dielectric layer for coating and planarizing the line and via sidewalls; and a liner material between the metal via and line conductors and the dielectric layers. Also provided is a method of forming the dual damascene interconnect structure.
摘要:
A software structure which when adapted in an apparatus is capable of virtual manufacturing of transmission elements for example gear means with chip formation, the software structure comprising a start module for loading the source file in a main editor-file that contains the computer program, an input module for providing input parameters that are essential for the configuration of a product and a cutting tool, a product design module for evolving the parameters for the manufacturing of the product; and a virtual manufacturing module having at least three sub-modules one each for tool generation, visualisation of machining operation, and disassembly of the product from the machine bed.
摘要:
Interconnect structures having buried etch stop layers with low dielectric constants and methods relating to the generation of such buried etch stop layers are described herein. The inventive interconnect structure comprises a buried etch stop layer comprised of a polymeric material having a composition SivNwCxOyHz, where 0.05≦v≦0.8, 0≦w≦0.9, 0.05≦x≦0.8, 0≦y≦0.3, 0.05≦z≦0.08 for v+w+x+y+z=1; a via level interlayer dielectric that is directly below said buried etch stop layer; a line level interlayer dielectric that is directly above said buried etch stop layer; and conducting metal features that traverse through said via level dielectric, said line level dielectric, and said buried etch stop layer.
摘要翻译:本文描述了具有低介电常数的掩埋蚀刻停止层的互连结构和与产生这种掩埋蚀刻停止层有关的方法。 本发明的互连结构包括掩埋的蚀刻停止层,其由具有下列成分的聚合物材料构成:其中X 1,X,Y, 其中0.05 <= v <= 0.8,0 <= w <= 0.9,0.05 <= x <= 0.8,0 <= y <= 0.3,0.05 u> 对于v + w + x + y + z = 1,z <= 0.08; 位于所述掩埋蚀刻停止层正下方的通孔层间电介质; 位于所述掩埋蚀刻停止层正上方的线级层间电介质; 以及导电穿过所述通孔级电介质,所述线级电介质和所述掩埋蚀刻停止层的金属特征。
摘要:
A system and method for detecting a loss of plasma confinement. The system includes a plasma chamber that includes a plasma space and a non-plasma space. A plasma apparatus generates a plasma within the plasma space. The non-plasma space surrounds the plasma space and is separated from the plasma space by a confinement barrier that is adapted to confine the plasma in the plasma space during performance of an operational process by the plasma on a substrate disposed within the plasma space. Plasma detectors distributed on bounding surfaces of the non-plasma space are adapted to detect plasma that has escaped from the plasma space during performance of the operational process. The operational process is performed while the plasma detectors are monitoring the non-plasma space for a presence of the escaped plasma in the non-plasma space. If the monitoring has detected the escaped plasma, then the operational process is aborted.
摘要:
A method of forming contacts for semiconductor devices, the method including depositing an inter-level dielectric (ILD) over a plurality of gate stacks, in which the divots within the inter-level dielectric layer are defined by the spaces between the gate stacks, filling the divots with an initial fill material, depositing a masking material on the dielectric over the gate stacks, and selectively etching the fill material to form contact vias. The fill material may be a self-assembly material such as a multi-block copolymer in which the blocks self organize vertically within the divots, so that a selective etch of the block material will remove the vertically organized blocks from the divot, but leave at least one block over the gate regions. In another embodiment, the fill material may be a metal, and the masking material may be a parylene based polymer.
摘要:
A dual damascene interconnect structure having a patterned multilayer of spun-on dielectrics on a substrate is provided. The structure includes: a patterned multilayer of spun-on dielectrics on a substrate, including: a cap layer; a first non-porous via level low-k dielectric layer having thereon metal via conductors with a bottom portion and sidewalls; an etch stop layer; a first porous line level low-k dielectric layer having thereon metal line conductors with a bottom portion and sidewalls; a polish stop layer over the first porous line level low-k dielectric; a second thin non-porous via level low-k dielectric layer for coating and planarizing the line and via sidewalls; and a liner material between the metal via and line conductors and the dielectric layers. Also provided is a method of forming the dual damascene interconnect structure.
摘要:
Damaged porous OSG layers and other damage may be chemically healed. Chemical healing is particularly advantageous in a porous OSG layer in a sub 90 nm ILD. For example, chemical healing may be by reacting the damage with an adhesion promoter having a “k” value comparable to the “k” value desired in the damaged material. Damaged porous OSG layers (which are hydrophilic) may be manipulated to prevent them from allowing moisture to reach copper lines. Undesirable copper out-diffusion can be controlled in ILDs having porous OSG geometry.