Abstract:
In a system especially suited to holography a transparent photoconductive material comprises a glass substrate, an electroconductive heating layer formed on the substrate, a photoconductive layer formed on the electroconductive layer and a thermoplastic layer formed on the photoconductive layer. The photoconductive material is electrostatically charged and radiated with a coherent light image to produce an electrostatic image across the thermoplastic layer. An electric voltage is applied to the electroconductive heating layer to produce heat which softens the thermoplastic layer. The electrostatic force of the electrostatic image across the thermoplastic layer causes the same to deform and produce a diffraction pattern which constitutes a holographic representation of the light image. A photosensor is disposed in a position to sense the intensity of light which is diffracted by the diffraction pattern which is in the process of being formed. A differentiating circuit differentiates the output of the photosensor and produces an output signal to terminate application of the electric voltage to the electroconductive heating layer to thereby terminate heating of the photoconductive material when the first derivative of the photosensor output reaches a value of zero. This corresponds to the maxima of the photosensor output which occurs when the formation of the diffraction pattern is maximum and further application of heat would cause the diffraction pattern to dissolve. The thermoplastic layer has fast thermal response so that it solidifies quickly when heat is removed and the diffraction pattern is formed to a maximum extent.
Abstract:
A method for producing a joined structure, containing: after placing an anisotropic conductive film in the predetermined manner, placing a wiring member containing a wiring plate formed thereon, where the wiring plate has a resist region in which the wiring plate is covered with a resist layer, and a second electrode region in which the wiring plate is not covered with the resist layer, so that the edge of the resist region at a boundary with the second electrode region comes above the chamfer part of the substrate; and heating and compressing the anisotropic conductive film from the side of the wiring member to melt and make the anisotropic conductive film flow into the side of the resist region to thereby cover the second electrode region with the anisotropic conductive film, so as to electrically connect the first electrode region and the second electrode region.
Abstract:
Measurement data of intensities of fluorescence obtained by directing excitation light onto a subject is acquired. An initial value of an absorption coefficient of the phosphor is set on the basis of a concentration distribution of the phosphor, an intensity distribution of the fluorescence on the basis of an absorption coefficient and a diffusion coefficient (reduced scattering coefficient) of the subject, which are set beforehand, are calculated, and the measurement data is compared with the calculation result. If these are found not to be matched, an absorption coefficient of the phosphor at which the error will be a minimum is estimated by performing an inverse problem calculation using a mathematical model. The calculation of the intensity distribution of the fluorescence and evaluation of the error from the obtained concentration distribution are repeated using the absorption coefficient, and a concentration distribution for which the error is the minimum is acquired.
Abstract:
An optical termination unit is provided for allowing an optical cable to be easily projected straight in any of five directions, including upward, downward, rightward, leftward, and rearward directions, thereby enhancing the efficiency of cable laying or the like. An end securing box 150 of the optical termination unit 100 includes a two-stage multi-tiered box structure separable to two bodies, the first stage including a clamp tray 120 and the second stage including a fusion tray 130 which is provided with a lid (lid 140) thereupon. An inlet Im (m=1, 2, 3, 4, 5) for introducing the end of a second optical cable to be embedded in a wall or a pillar is provided at each face of the enclosure. Holes H1 and H2 formed on the rear face 115 are provided for securing the end securing box 150 with a nylatch n. The end securing box 150 having a rectangular solid shape has multiple holes formed therein. This allows the end securing box 150 to be secured to a rear face 115 so as to be arbitrarily oriented on a right angle basis.
Abstract:
A film-shaped adhesive application apparatus includes a supply reel retainer for mounting a film-shaped adhesive supply reel used to wind into a roll shape a film-shaped adhesive 1 comprising a base film and an adhesive layer formed thereon, thermocompression bonding means for thermocompression-bonding the film-shaped adhesive drawn from the film-shaped adhesive supply reel to an adherend, and a winding reel retainer for mounting a winding reel used to wind the base film of the thermocompression-bonded film-shaped adhesive, and further temperature control means (thermal shield plate, cooler, or the like) for controlling the film-shaped adhesive supply reel mounted on the supply reel retainer at a prescribed temperature.
Abstract:
A conductive particle can be used for connecting a variety of adherends. The conductive particle includes a resin particle, a first conductive particle disposed around the resin particle, a first resin coating disposed on the periphery of the resin particle. The first resin coating being softer than the resin particle. A second conductive thin film is disposed therearound. When the surface part of an electrode of an adherend that is to be connected is hard, a first resin coating of the conductive particle and the second conductive thin film are destroyed by pressure to bring the second conductive thin film in contact with the electrode and a metal wiring. If the surface part of the electrode is soft, the second conductive thin film on the surface side comes in contact with the electrode, which makes it possible for the particle to be used regardless of the surface state of an adherend.
Abstract:
A current sensor for detecting a full return current is connected to a high voltage generator. A leakage current detector including current sensors for detecting a leakage current is provided at the surface of the cover of a coating machine, air passages and a paint passage. Based on current detection values obtained by the current sensors, a high voltage control unit controls a power supply voltage control unit and a high voltage to be output from the high voltage generator can be raised or dropped. By employing the current detection values, the high voltage control unit can identify and provide notification of a location where the leakage current is increased and the insulation is deteriorated, and can request an operator to perform maintenance for the pertinent location. Further, upon occurrence of the insulation being deteriorated, the high voltage control unit can stop the high voltage supply.
Abstract:
An image pickup apparatus is provided. The image pickup apparatus permitting a conversion lens to be mounted and dismounted, wherein a lens hood is composed of a base portion on the mounting side and a tubular portion on the front side, the base portion and the tubular portion are detachably coupled to each other, and another lens is contained in the inside of the lens hood when the another lens is mounted on the front side of an optical system, whereby even when the conversion lens is being used, the lens hood can be used as it is, and the incident light contracting function of the lens hood can be maintained.
Abstract:
An emission cleaning installation which is easy to connect continuously even to existing large-scale incineration furnaces and which is able to oxidatively break down and eliminate environmental pollutants contained in the emissions, for example dioxins, dibenzofurans, coplanar PCBs, nitrogen oxides (NOx) and the like without temperature control of the emission temperature, by the photocatalytic action of the photocatalyst, and to a method for emission cleaning and elimination which uses the abovementioned emission cleaning installation.
Abstract:
A working oil accumulated in oil reservoirs is supplied to electric motor cooling oil passages and lubricating oil passages in well-balanced manner all during the time of normal and very low temperatures in an electric drive unit. The electric drive unit comprises an electric motor and a feed oil passage, through which a working oil for cooling and lubrication is supplied to respective mechanisms of a drive unit including the electric motor, in a drive unit body. An oil reservoir communicates with a working oil supply source and is provided in an upper area of the drive unit body. A weir is provided between a first reservoir, which communicates the oil reservoir to the working oil supply source and communicated to small flow-rate discharge oil passages, and a second reservoir communicates with a large flow-rate discharge oil passage. Because discharge of the working oil to the large flow-rate discharge oil passage is thereby restricted until the working oil reaches a level to go over the weir, setting of an orifice on a side of the large flow-rate discharge oil passage in conformity to flowability of the working oil at the time of very low temperature makes it possible to prevent the working oil from excessively flowing to the side of the large flow-rate discharge oil passage at the time of normal temperature, while preventing a pressure rise in the oil reservoirs at the time of very low temperature.