Abstract:
Embodiments relate to a linear deposition apparatus with mechanism for securing a shadow mask and a substrate onto a susceptor. The linear deposition apparatus includes a set of members attached to latches that are raised to unlock the shadow mask and the substrate from the susceptor. The latches are lowered to secure the shadow mask and the substrate to the susceptor. Another set of members are provided in the linear deposition apparatus to move and align the shadow mask with the substrate. The linear deposition apparatus also includes a main body and two wings provided at both sides of the main body to receive the substrate as the substrate moves linearly to expose the substrate to materials or radicals injected by reactors.
Abstract:
A vapor deposition reactor has a configuration where a substrate or a vapor deposition reactor moves in a non-contact state with each other to allow the substrate to pass by the reactor and an injection unit and an exhaust unit are installed as a basic module of the reactor for receiving a precursor or a reactant and for receiving and pumping a purge gas, respectively. With the use of a small-size inlet for the reactor, homogeneous film properties are obtained, the deposition efficiency of precursors is improved, and an amount of time required for a purge/pumping process can be reduced. In addition, since the reactor itself is configured to reflect each step of ALD, it does not need a valve. Moreover, the reactor makes it easier for users to apply remote plasma, use super high frequencies including microwave, and UV irradiation.
Abstract:
Embodiments relate to applying a magnetic field across the paths of injected polar precursor molecules to cause spiral movement of the precursor molecules relative to the surface of a substrate. When the polar precursor molecules arrive at the surface of the substrate, the polar precursor molecules make lateral movements on the surface due to their inertia. Such lateral movements of the polar precursor molecules increase the chance that the molecules would find and settle at sites (e.g., nucleation sites, broken bonds and stepped surface locations) or react on the surface of the substrate. Due to the increased chance of absorption or reaction of the polar precursor molecules, the injection time or injection iterations may be reduced.
Abstract:
Embodiments relate to using radicals to at different stages of deposition processes. The radicals may be generated by applying voltage across electrodes in a reactor remote from a substrate. The radicals are injected onto the substrate at different stages of molecular layer deposition (MLD), atomic layer deposition (ALD), and chemical vapor deposition (CVD) to improve characteristics of the deposited layer, enable depositing of material otherwise not feasible and/or increase the rate of deposition. Gas used for generating the radicals may include inert gas and other gases. The radicals may disassociate precursors, activate the surface of a deposited layer or cause cross-linking between deposited molecules.
Abstract:
Depositing one or more layers of material on a substrate using atomic layer deposition (ALD) followed by surface treating the substrate with radicals of inert gas before subjecting the substrate to further deposition of layers. The radicals of the inert gas appear to change the surface state of the deposited layer to a state more amenable to absorb subsequent source precursor molecules. The radicals of the inert gas disconnect bonding of molecules on the surface of the substrate, and render the molecules on the surface to have dangling bonds. The dangling bonds facilitate absorption of subsequently injected source precursor molecules into the surface. Exposure to the radicals of the inert gas thereby increases the deposition rate and improves the properties of the deposited layer.
Abstract:
A substrate structure is produced by forming a first material layer on a substrate having a recess, removing the first material layer from the portion of the substrate except for the recess using a second material that reacts with the first material, and forming a deposition film from the first material layer using a third material that reacts with the first material. A method of manufacturing a device may include the method of forming a substrate structure.
Abstract:
Example embodiments relate to a solar cell and a method for fabricating the same, and more particularly, to a solar cell in which a substrate capable of functioning as electrode is used and a method for fabricating the same. The solar cell may include a substrate and a semiconductor layer laminated on the substrate. The solar cell may include a conductive substrate. The substrate may be a flexible substrate having a coefficient of thermal expansion comparable to that of the semiconductor layer. The semiconductor layer may be formed on the substrate. The solar cell may include a front electrode formed on the semiconductor layer.
Abstract:
Cooling a heated substrate undergoing a deposition process (e.g., ALD, MLD or CVD) and a deposition reactor for performing the deposition process by routing a cooled purge gas through a path in the deposition reactor and then injecting the cooled purge gas onto the substrate. The deposition reactor may include a heater to heat precursor. As the precursor passes the heater, the precursor is heated to a temperature conducive to the deposition process. As a result of operating the heater and routing the heated precursor, the temperature of the substrate and the deposition reactor may be increased. To drop the temperature of the substrate and the deposition reactor, a purge gas cooled to a temperature lower than the heated precursor is injected onto the substrate via the deposition reactor
Abstract:
Depositing a layer of graphene or conjugate carbons on a surface of a substrate using carbon radicals generated by exposing a carbon material to radicals of a gas. The radicals of the gas are generated by injecting the gas into a plasma chamber and then applying voltage difference to electrodes within or surrounding the plasma chamber. The radicals of the gas come into contact with the carbon material (e.g., graphite) and excite carbon radicals. The excited carbon radicals are injected onto the surface of the substrate, passes through a constriction zone of the reactor assembly and are then exhausted through a discharge portion of the reactor assembly. When the excited carbon radicals come into contact with the substrate, the carbon radicals form a layer of graphene or conjugated carbons on the substrate.
Abstract:
An injection module assembly (IMA) that moves along a predetermined path to inject gas onto a substrate and discharge excess gas is described. The IMA may be used for processing a substrate that is difficult to move for various reasons such as a large size and weight of the substrate. The IMA is connected to one or more sets of jointed arms with structures to provide one or more paths for injecting the gas or discharging the excess gas. The IMA is moved by a first driving mechanism (e.g., linear motor) and the jointed arms are separately operated by a second driving mechanism (e.g., pulleys and cables) to reduce force or torque caused by the weight of the jointed arms. The movement of the first driving mechanism and the second driving mechanism is synchronized to move the IMA and the jointed arms.