Abstract:
Placing a conductive member between a plasma chamber in a remote plasma reactor and a substrate to shield the substrate from irradiation of undesirable electromagnetic radiation, ions or electrons. The conductive member blocks the electromagnetic radiation, neutralizes ions and absorbs the electrons. Radicals generated in the plasma chambers flows to the substrate despite the placement of the conductive member. In this way, the substrate is exposed to the radicals whereas damages to the substrate due to electromagnetic radiations, ions or electrons are reduced or removed.
Abstract:
Embodiments relate to a structure of reactors in a deposition device that enables efficient removal of excess material deposited on a substrate by using multiple-staged Venturi effect. In a reactor, constriction zones of different height are formed between injection chambers and an exhaust portion. As purge gas or precursor travels from injection chambers to the exhaust portion and passes the constriction zones, the pressure of the gas drops and the speed of the gas increase. Such changes in the pressure and speed facilitate removal of excess material deposited on the substrate.
Abstract:
Embodiments relate to a structure for securing a shadow mask and a susceptor where the top surface of the shadow mask mounted with the susceptor is flush with the top surface of the susceptor. When the susceptor is mounted with the shadow mask, the entire top surface of the susceptor and the shadow mask is substantially coplanar. A substrate onto which material is deposited is placed below the shadow mask. The susceptor moves below reactors for injecting materials or radicals. Since the entire top surface of the susceptor is substantially flat, the vertical distance between the reactors and the susceptor can be reduced, contributing to the overall quality of the layer formed on the substrate and reducing the materials wasted by leaking outside the gap between the susceptor and the reactors.
Abstract:
An injection module assembly (IMA) that moves along a predetermined path to inject gas onto a substrate and discharge excess gas is described. The IMA may be used for processing a substrate that is difficult to move for various reasons such as a large size and weight of the substrate. The IMA is connected to one or more sets of jointed arms with structures to provide one or more paths for injecting the gas or discharging the excess gas. The IMA is moved by a first driving mechanism (e.g., linear motor) and the jointed arms are separately operated by a second driving mechanism (e.g., pulleys and cables) to reduce force or torque caused by the weight of the jointed arms. The movement of the first driving mechanism and the second driving mechanism is synchronized to move the IMA and the jointed arms.
Abstract:
Cooling a heated substrate undergoing a deposition process (e.g., ALD, MLD or CVD) and a deposition reactor for performing the deposition process by routing a cooled purge gas through a path in the deposition reactor and then injecting the cooled purge gas onto the substrate. The deposition reactor may include a heater to heat precursor. As the precursor passes the heater, the precursor is heated to a temperature conducive to the deposition process. As a result of operating the heater and routing the heated precursor, the temperature of the substrate and the deposition reactor may be increased. To drop the temperature of the substrate and the deposition reactor, a purge gas cooled to a temperature lower than the heated precursor is injected onto the substrate via the deposition reactor
Abstract:
Heating of precursor before exposing the substrate to the precursor for depositing material on the substrate using a deposition method (e.g., ALD, MLD or CVD). A reactor for injecting precursor onto the substrate includes a heater placed in a path between a channel connected to a source of the precursor and a reaction chamber of the reactor. As the precursor passes the heater, the precursor is heated to a temperature conducive to the deposition process. Alternatively or in addition to the heater, the reactor may inject a heated gas that mixes with the precursor to increase the temperature of the precursor before exposing the substrate to the precursor.
Abstract:
Depositing a layer of graphene or conjugate carbons on a surface of a substrate using carbon radicals generated by exposing a carbon material to radicals of a gas. The radicals of the gas are generated by injecting the gas into a plasma chamber and then applying voltage difference to electrodes within or surrounding the plasma chamber. The radicals of the gas come into contact with the carbon material (e.g., graphite) and excite carbon radicals. The excited carbon radicals are injected onto the surface of the substrate, passes through a constriction zone of the reactor assembly and are then exhausted through a discharge portion of the reactor assembly. When the excited carbon radicals come into contact with the substrate, the carbon radicals form a layer of graphene or conjugated carbons on the substrate.
Abstract:
A vapor deposition reactor includes a chamber filled with a first material, and at least one reaction module in the chamber. The reaction module may be configured to make a substrate pass the reaction module through a relative motion between the substrate and the reaction module. The reaction module may include an injection unit for injecting a second material to the substrate. A method for forming thin film includes positioning a substrate in a chamber, filling a first material in the chamber, moving the substrate relative to a reaction module in the chamber, and injecting a second material to the substrate while the substrate passes the reaction module.
Abstract:
An injection module assembly (IMA) that moves along a predetermined path to inject gas onto a substrate and discharge excess gas is described. The IMA may be used for processing a substrate that is difficult to move for various reasons such as a large size and weight of the substrate. The IMA is connected to one or more sets of jointed arms with structures to provide one or more paths for injecting the gas or discharging the excess gas. The IMA is moved by a first driving mechanism (e.g., linear motor) and the jointed arms are separately operated by a second driving mechanism (e.g., pulleys and cables) to reduce force or torque caused by the weight of the jointed arms. The movement of the first driving mechanism and the second driving mechanism is synchronized to move the IMA and the jointed arms.
Abstract:
Placing a conductive member between a plasma chamber in a remote plasma reactor and a substrate to shield the substrate from irradiation of undesirable electromagnetic radiation, ions or electrons. The conductive member blocks the electromagnetic radiation, neutralizes ions and absorbs the electrons. Radicals generated in the plasma chambers flows to the substrate despite the placement of the conductive member. In this way, the substrate is exposed to the radicals whereas damages to the substrate due to electromagnetic radiations, ions or electrons are reduced or removed.