Abstract:
The method of obtaining the CMK-3-type carbon replica, consisting of the introduction of SBA-15-type molecular sieve to a mixture of furfuryl alcohol and a solvent, the subsequent polycondensation of furfuryl alcohol, carbonization of the prepared, composite and removal of the hard template, according to the invention, is characterized in that the reaction of furfuryl alcohol polycondensation is carried out by the precipitation method in a slurry containing SBA-15 silica sieve, water, furfuryl alcohol and concentrated solution of hydrochloric acid in mass ratios, respectively, in the range from 1.00:32.33:1.00:6.65 to 1.00:30.83:2.50:16.64, whereas the ratio of the total mass of furfuryl alcohol and water to the mass of SBA-15 as well as the mass ratio of the concentrated HCl solution to the mass of furfuryl alcohol are kept at the constant value every time.
Abstract:
Methods of forming a hierarchical porous monolith are provided. The methods include mixing a monomer, a silica precursor and a catalyst in a solvent to form a mixture. The methods also include adding a gelling agent to the mixture to form a polymer-silica composite gel. The polymer-silica composite gel undergoes a phase separation to separate from the solvent and the unreacted silica precursor. The method further includes drying the polymer-silica composite gel to evaporate the solvent to form a polymer-silica monolith and processing the polymer-silica monolith to form at least one of a polymer monolith, a carbon monolith, a silica monolith and a carbon-silica monolith.
Abstract:
A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.
Abstract:
A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.
Abstract:
The present invention provides for a device for reducing a volatile organic compound (VOC) content of a gas comprising a manganese oxide (MnOx) catalyst. The manganese oxide (MnOx) catalyst is capable of catalyzing formaldehyde at room temperature, with complete conversion, to CO2 and water vapor. The manganese oxide (MnOx) catalyst itself is not consumed by the reaction of formaldehyde into CO2 and water vapor. The present invention also provides for a device for reducing or removing a particle, a VOC and/or ozone from a gas comprising an activated carbon filter (ACF) on a media that is capable of being periodically regenerated.
Abstract:
This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.
Abstract:
The present invention provides a supported reactant for in situ remediation of soil and/or groundwater contaminated with a halogenated hydrocarbon consisting essentially of an adsorbent impregnated with zero valent iron, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon. In one embodiment, the adsorbent is activated carbon.
Abstract:
Disclosed is a process for manufacturing a nitrogen-containing porous carbonaceous material with an optional inorganic salt content of up to 50 ppm by weight. The process comprises the following steps: (A) conversion of (a) at least one heterocyclic hydrocarbon with at least two NH2-groups per molecular with (b) at least one aromatic compound with at least two aldehyde groups per molecular, (B) heating in the absence of oxygen to temperature in the range of from 700 to 1200° C.
Abstract:
There is disclosed a honeycomb structure usable as a support of a honeycomb catalyst onto which a large amount of catalyst can be loaded and which has a good purification efficiency, and the honeycomb structure includes porous partition walls 5 defining a plurality of cells to form through channels of a fluid and having a plurality of pores 10 therein, wherein a porosity of the partition walls 5 is from 45 to 70%, and in a cross section perpendicular to an extending direction of the cells, a total area of macro pores 12 having the largest pore diameter of larger than 10 μm is 50% or more with respect to a total area of the pores 10.
Abstract:
This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.