摘要:
Aspects of the disclosure relate to an efficient entirely man-made nanobio hybrid fabricated through cell-free expression of transmembrane proton pump followed by assembly of the synthetic protein architecture with semiconductor nanoparticles for photocatalytic H2 evolution. The system produces H2 at a turnover rate of 240 μmol of H2 (μmol protein)−1 h−1 under green and 17.74 mmol of H2 (μmol protein)−1 h−1 under white light at ambient conditions, in water at neutral pH with methanol as a sacrificial electron donor. Robsutness and flexibility of this approach allows for systemic manipulation at nanoparticle-bio interface toward directed evolution of energy materials and devices.
摘要:
A catalytic nanoparticle can include a nanodiamond core, a thin-layer polymeric film applied to an outer surface of the nanodiamond core, and a catalyst immobilized at an outer surface of the thin-layer polymeric film. The nanoparticles can also be used in connection with a transducer to form a sensor. A method of catalysis can include contacting the catalytic nanoparticle with a reactant in a reaction area. The reactant can be capable of forming a reaction product via a reaction catalyzed by the catalyst. The method of catalysis can also include facilitating a catalytic interaction between the catalytic nanoparticle and the reactant.
摘要:
Provided is a solid acid catalyst for use in oxidation of a substrate in the coexistence of oxygen and ozone (solid acid catalyst for oxygen-ozone-coexisting oxidation). The solid acid catalyst enables oxidation of the substrate with a high conversion. This solid acid catalyst for oxygen-ozone-coexisting oxidation is a solid acid catalyst for use in an oxidation reaction to oxidize a substrate (A) in the coexistence of oxygen and ozone. The solid acid catalyst includes a transition metal in the form of an elementary substance, a compound, or an ion, and a support supporting the transition metal. The support includes, at least in its surface, a strong acid or super strong acid having a Hammett acidity function (H0) of −9 or less. The support is preferably a pellet or particle made of a fluorinated sulfonic acid resin, or a support including a solid and a layer of a fluorinated sulfonic acid resin disposed on the solid.
摘要:
Providing a catalytic process for preparing 1,4-diketone compounds from furanic compounds and their precursors in a liquid medium, using an acid catalytic system and optionally in the presence of hydrogen and a hydrogenation catalyst, wherein the acidic catalytic system comprises a solid acid catalyst or a mixture of water and CO2.
摘要:
The present invention relates to a method for producing the activated catalyst for Fischer-Tropsch synthesis comprising: a first step of reducing a catalyst for Fischer-Tropsch synthesis; a second step of preparing liquid hydrocarbon in which a part or all of molecular oxygen is eliminated; and a third step of introducing the reduced catalyst prepared in the first step into the liquid hydrocarbon prepared in the second step while blocking its contact with air. Since the reduced catalyst used for Fischer-Tropsch synthesis is introduced into liquid hydrocarbon from which molecular oxygen is removed or coated by liquid hydrocarbon, the catalyst for Fischer-Tropsch synthesis activated based on the present invention maintains a high activity even if exposed to the air for a long time, thereby easily facilitating the long-term storage and long-distance transfer of the reduced catalyst.
摘要:
To provide a catalyst for dehydrogenation of formic acid which allows hydrogen, heavy hydrogen gas or heavy-hydrogenated hydrogen containing no carbon monoxide to be produced through dehydrogenation of formic acid in a highly efficient manner.A catalyst for dehydrogenation of formic acid, including: a multinuclear metal complex represented by the following Formula (1), a tautomer or stereoisomer thereof, or a salt thereof, where M1 and M2 denote transition metals and may be the same as or different from each other; Q1 to Q6 each independently denote carbon or nitrogen; R1 to R6 each independently denote, for example, a hydrogen atom, an alkyl group, a phenyl group, a nitro group, a halogen group, a sulfonate group (sulfo group); L1 and L2 each independently denote an aromatic anionic ligand or an aromatic ligand, and may be substituted by one or more substituents; Y1 and Y2 each independently denote any ligand or are absent; and m denotes a positive integer, 0, or a negative integer.
摘要翻译:提供甲酸脱氢催化剂,其允许通过以高效的方式使甲酸脱氢生产氢,重氢气或不含一氧化碳的重氢氢。 一种用于甲酸脱氢的催化剂,包括:由下式(1)表示的多核金属络合物,其互变异构体或立体异构体或其盐,其中M1和M2表示过渡金属,并且可以相同或不同 彼此; Q1至Q6各自独立地表示碳或氮; R 1〜R 6各自独立地表示例如氢原子,烷基,苯基,硝基,卤素基,磺酸酯基(磺基)等。 L1和L2各自独立地表示芳族阴离子配体或芳族配体,并且可以被一个或多个取代基取代; Y1和Y2各自独立地表示任何配体或不存在; m表示正整数,0表示负整数。
摘要:
A method and a system for producing a change in a medium. The method places in a vicinity of the medium at least one energy modulation agent. The method applies an initiation energy to the medium. The initiation energy interacts with the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the energy modulation agent.
摘要:
Material with hybrid particles (1) each consisting of a particle (2) of a phase-change material (PCM) interfaced with a catalytic material (3) in solid form, the size of the hybrid particles being between 0.1 mm and 10 mm, preferably between 1 mm and 5 mm.
摘要:
A method and a system for producing a change in a medium. The method places in a vicinity of the medium at least one energy modulation agent. The method applies an initiation energy to the medium. The initiation energy interacts with the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the energy modulation agent.
摘要:
A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.