Abstract:
A motor vehicle rear axle including a pair of longitudinal control arms made of cast iron or aluminum and a transverse torsion bar made of steel. Each control arm has a first end hinged to a body of the motor vehicle for up and down pivotal movement, a second end at which a wheel spindle is rigidly attached, and a socket facing the other control arm. Each socket has a diametrically opposite pair of apertures therein. The torsion bar has a pair of opposite terminal ends which are formed to match and interference fitted in respective ones of the control arm sockets. A pair of plugs in each of the pair of diametrically opposite apertures in the control arm sockets are fusion bonded to corresponding ones of the terminal ends of the torsion bar. The fusion bonded plugs define lugs in the apertures which torsionally reinforce the interference fit between the terminal ends of the torsion bar and the control arm sockets and which positively prevent dislodgment of the terminal ends from the control arm sockets.
Abstract:
A twist beam type suspension has a twist beam having an increased rigidity. Each of a pair of trailing arms has a front end pivotally mounted on a body of the vehicle and a rear end rotatably supporting a wheel. A twist beam extends between the trailing arms in a side-to-side direction of the vehicle. Opposite ends of the twist beam are connected to the respective trailing arms. The twist beam has a bent portion projecting upwardly in the center of the twist beam.
Abstract:
A suspension coil spring includes a lower end turn portion, an upper end turn portion, and a helical effective portion formed between the end turn portions. The lower end turn portion includes a first portion which contacts a lower spring seat irrespective of a load, and a second portion which contacts the lower spring seat or is separated from the same according to the load. The wire diameter of the second portion is greater than that of the first portion and an average wire diameter of the effective portion. The upper end turn portion includes a third portion which contacts an upper spring seat, and a fourth portion. The wire diameter of the fourth portion is greater that of the third portion and the average wire diameter of the effective portion.
Abstract:
A torsion beam type suspension and a forming method of a torsion beam are disclosed. In the torsion beam type suspension comprising a pair of left and right trailing arms connected to each other through a torsion beam, front ends of the trailing arms being used to mount a vehicle body by using joints, the torsion beam is obtained by forming an overall length of a pipe having a certain wall thickness by using a pressure forming process. In this case, end sections defined at both end portions of the torsion beam have a cross-sectional shape of a hollow oval, a center section defined at a center portion of the torsion beam has a cross-sectional shape of a hollow open loop, and middle sections defined between the center portion and both the end portions of the torsion beam have a cross-sectional shape of a hollow open loop. The loop of the middle sections defines an inner space larger than that defined by the loop of the center section. Further, since the torsion beam can be easily formed by adopting a hydro-forming process, it is possible to achieve high twisting rigidity, bending rigidity, and durability without requiring a torsion bar and reinforcement, which must be inevitably assembled to a conventional torsion beam axle, resulting in a reduction of the number of constitutive elements and the overall weight.
Abstract:
It is a torsion beam suspension S including a pair of lateral trailing members, each of which has a front end portion 1a pivotally supported by a vehicle body and also has a rear end portion 1b adapted to suspend wheels, and a torsion beam 2 adapted to have an open face, in which a vehicle front side or a vehicle rear side thereof is opened, and to extend in a lateral direction of a vehicle. Intermediate portions 1c of the pair of trailing members 1 are respectively bonded to both end portions 2a of the torsion beam 2. On an inner side wall 1d of each of the trailing members 1, a patch member 4 connecting a corresponding one of the trailing members 1 to the torsion beam 2 is disposed.
Abstract:
The twist-beam axle (10) comprises a central cross-member (11) compliant to torsion and a pair of trailing arms (12) fixed to side end portions (11a) of the cross-member (11) for articulated connection of the axle to the vehicle body and for support of the rear wheels. Each trailing arm (12) is formed by a pair of first, transversely inner half-shells (18, 19), that is, a front half-shell and a rear half-shell, respectively, securely connected to each other and to the respective end (11a) of the cross-member (11), and by a second transversely outer half-shell (20), securely connected to the pair of first half-shells (18, 19) so as to form therewith a structure having a closed cross-section.
Abstract:
A torsion beam suspension member using two u-shaped, stamped members that are superimposed and welded to form a torsion arm. No additional torsion tube or bar is needed. Tuning holes (rectangular, oblong, round or any other suitable shape) are used to change or tune the torsional resilience of the suspension. In the preferred embodiment, the tuning holes are oblong and located near the center of the cross member. The tuning holes are selected based on having target value for torsional compliance or resilience. The size, quantity and location of the tuning hole are chosen based on computer analysis. An optimization or iterative process is used to arrive at the final hole size, quantity and location.
Abstract:
Opposite ends of a torsion beam are connected to left and right trailing arms, and a spindle which supports a wheel is secured to a spindle support plate which is welded to each of the left and right trailing arms. Bent flanges which are formed in the outer periphery of a body of the spindle support plate, are fitted to the outer periphery of the end of trailing arm and secured by welding. With this arrangement, thermal warp of the body of the spindle support plate which supports spindle can be prevented, and not only can the mounting precision of the spindle be improved, but also the thickness of the spindle support plate can be reduced to reduce the weight.
Abstract:
A torsion beam type suspension and a forming method of a torsion beam are disclosed. In the torsion beam type suspension comprising a pair of left and right trailing arms connected to each other through a torsion beam, front ends of the trailing arms being used to mount a vehicle body by using joints, the torsion beam is obtained by forming an overall length of a pipe having a certain wall thickness by using a pressure forming process. In this case, end sections defined at both end portions of the torsion beam have a cross-sectional shape of a hollow oval, a center section defined at a center portion of the torsion beam has a cross-sectional shape of a hollow open loop, and middle sections defined between the center portion and both the end portions of the torsion beam have a cross-sectional shape of a hollow open loop. The loop of the middle sections defines an inner space larger than that defined by the loop of the center section. Further, since the torsion beam can be easily formed by adopting a hydro-forming process, it is possible to achieve high twisting rigidity, bending rigidity, and durability without requiring a torsion bar and reinforcement, which must be inevitably assembled to a conventional torsion beam axle, resulting in a reduction of the number of constitutive elements and the overall weight.