Abstract:
The present invention provides a lace fabric of a helical structure containing twisted optical fiber threads and a production method therefor. The lace fabric comprises light guiding threads, an external sleeve and braided ropes. The light guiding threads and the braided ropes are mutually twisted to form a whole body; the external sleeve is further sleeved outside the light guiding threads and the braided ropes; an LED light source module is arranged at the outer parts of the light guiding threads and the braided ropes; and a light-emitting end of the LED light source module and the light guiding threads are arranged opposite to each other. The present invention is safe, is low in cost, is conveniently applied to and combined into various daily supplies, is used in some spaces with little light, such as outdoors in the night and other places.
Abstract:
Provided is a cable including a stranded member floating-preventing element that can be easily peeled off. A power transmission line core includes one core member and six side members twisted around the core member, each member obtained by impregnating a fiber bundle including a plurality of carbon fibers that are continuous in the longitudinal direction and bundled into the fiber bundle with a resin and curing the resin. A tow including a plurality of tow fibers that are continuous in the longitudinal direction and arranged flatly and densely is spirally wound around the surface of the power transmission line core in the direction opposite to the twisting direction of the side members. The tow is detachably entangled in the unevenness on the surface of the power transmission line core.
Abstract:
A rope structure adapted to engage a bearing structure while under load comprises a plurality of fibers, a matrix, and lubricant particles. The plurality of fibers is adapted to bear the loads applied to the ends of the rope structure. The matrix surrounds at least a portion of some of the plurality of fibers. The lubricant particles are supported by the matrix such that at least some of the lubricant particles are arranged between at least some of the fibers to reduce friction between at least some of the plurality of fibers and at least some of the lubricant particles are arranged to be between the bearing structure and at least some of the plurality of fibers to reduce friction between the bearing structure and at least some of the plurality of fibers.
Abstract:
A rope structure adapted to engage a bearing structure while under load comprises a plurality of fibers, a matrix, and lubricant particles. The plurality of fibers is adapted to bear the loads applied to the ends of the rope structure. The matrix surrounds at least a portion of some of the plurality of fibers. The lubricant particles are supported by the matrix such that at least some of the lubricant particles are arranged between at least some of the fibers to reduce friction between at least some of the plurality of fibers and at least some of the lubricant particles are arranged to be between the bearing structure and at least some of the plurality of fibers to reduce friction between the bearing structure and at least some of the plurality of fibers.
Abstract:
A rope structure comprising a core component comprising core fibers combine to form a first rope structure and a first cover component comprising first cover strands comprising first cover fibers within a first matrix material. The first cover strands are arranged around at least a portion of the core component.
Abstract:
The invention relates to a high strength fibers comprising a coating of cross-linked silicone polymer, and ropes made thereof. The fibers are preferably high performance polyethylene (HPPE) fibers. The coating comprising a cross-linked silicone polymer is made from a coating composition comprising a cross-linkable silicone polymer. The rope shows markedly improved service life performance in bending applications such as cyclic bend-over-sheave applications. The invention also relates to the use of a cross-linked silicone polymer in a rope for an improvement of bend fatigue resistance.
Abstract:
A steel cord comprises more than one steel filament (10). At least some of the steel filaments have a zinc iron alloy layer (14) partially covered with a zinc cover (16). The zinc cover is only present in valleys formed in the zinc-iron alloy layer. The processability and adhesion level in rubber products of the steel cord are increased.
Abstract:
A steel cord comprises more than one steel filament (10). At least some of the steel filaments have a zinc iron alloy layer (14) partially covered with a zinc cover (16). The zinc cover is only present in valleys formed in the zinc-iron alloy layer. The processability and adhesion level in rubber products of the stell cord are increased.
Abstract:
A rubber product-reinforcing metallic cord is provided which comprises three to five metallic filaments, which shows a high degree of penetration of rubber without reducing compressive rigidity, and which can be manufactured at low facility and production costs. A rubber product-reinforcing metallic cord 7 is formed by twisting together a pre-strand 6 comprising a first metallic filament 1 and a second metallic filament 2 helically wrapped around the first filament 1, and a fifth metallic filament 3 (or 5) with a twist pitch P. The metallic cord 7 may be formed by twisting together two of such pre-strands, or by twisting together two of such pre-strands and the fifth metallic filament.
Abstract:
In a rope of a type of filling a resin constituting other member between strands, there is provided a wire rope for a running wire capable of promoting fatigue life by reducing a wire breakage at a point of being contacted to a core rope by precisely constraining a movement of a wire and reducing an elongation.A rope having a core rope and a plurality of pieces of side strands arranged at an outer periphery thereof and twisted together, and a resinous spacer interposed between the side strands, in which the core rope includes a rope main body and a resin coating layer outwardly surrounding the core rope main body, the core rope main body and the side strand are separated by the resin coating layer, and the resin spacer is provided with a contour in correspondence with an outer layer wire of the side strand and invades between the wires.