Abstract:
A method to control valves that may be deactivated during multi-stroke cylinder operation. Valves are controlled to improve drivability and reduce valve degradation.
Abstract:
Hydraulic engine valve actuation systems and methods for internal combustion engines. The systems utilize a proportional valve to regulate the flow of a working fluid to and from a hydraulic actuator controlling the engine valve position. The position of the proportional valve is controlled by one or more high speed valves to control various engine valve parameters, including engine valve takeoff and landing velocities. Returning all valves to a known starting position between engine valve events avoids accumulation of errors in proportional valve positioning. Embodiments using spool valves for the high speed valves and the proportional valve, and spring return and hydraulic return for the engine valve, are disclosed. A specially shaped spool in the proportional valve provides enhanced control over the engine valve operation. Various further alternate embodiments are disclosed.
Abstract:
A method and apparatus is provided for operating a piston driven, internal combustion engine (10) including a the piston (40) translating in a cylinder (30). The engine (10) has an intake stroke, followed by a partial exhaust stroke, followed by a compression stroke, followed by a power stroke and then an exhaust stroke, all of which are sequentially repeated. The compression stroke has a stroke length that is less than the stroke length of the power stroke.
Abstract:
Fluid working reciprocating devices are described, including internal combustion engines, compressors and pumps, and how such devices may transfer power to electric generators or turbines. Devices can be within casings which may be “snapped into” larger machinery, such as vehicles, aircraft or marine craft. A number of arrangements for pistons and cylinders of unconventional configuration are described, mostly intended for use in IC engines operating without cooling. Included are toroidal combustion or working chambers, some with fluid flow through the core of the toroid, a single piston reciprocating between a pair of working chambers, tensile valve actuation, tensile links between piston and crankshaft, energy absorbing piston—crank links, crankshafts supported on gas bearings, cylinders rotating in housings, injectors having components which reciprocate or rotate during fuel delivery. In some embodiments pistons may rotate while reciprocating. High temperature exhaust emissions systems are described, including those containing filamentary material.
Abstract:
A ‘Blackburn Cycle’ internal combustion engine has maximised ‘air only’ induction and ‘air only’ exhaust strokes between usual 4 stroke cycles. One or more inlet valves open fully via lever 7 for the alternate ‘air only’ inductions. The travel for the next fuel/air induction through the same inlet valve 13 is varied by variable fulcrum 10 acting on rocker 8 via push rod 11. This gives controllable fuel/air inductions without the need for a throttle. An inlet valve opens twice with one cam form and one cam revolution. Fuel is injected directly into the cylinder as required for the usual 4 stroke cycles between the ‘air only’ cycles.
Abstract:
A piston type pneumatic engine, including a cylinder block, a piston, a cylinder, a crankshaft, a connecting rod, a camshaft, and a device for controlling the opening or closing of a gas valve. A cylinder cover arranged on the cylinder block is provided with an inwardly-opened type compressed-gas intake valve and an exhaust valve. An intake cam and an exhaust cam are arranged on the camshaft. The opening or closing of the intake and the exhaust valves is controlled by a rocker arm which is driven by the camshaft. The camshaft is driven by the rotated crankshaft via a timing chain or belt.
Abstract:
Valve assembly and method in which a valve member is connected to an elongated lever arm for controlling communication between two chambers in an engine. The valve assembly is disposed at least partially within one of the chambers, and the valve member is moved between open and closed by an actuator connected to the lever arm. In some disclosed embodiments, a pilot valve is opened to equalize pressure on both sides of the valve member prior to moving the valve member toward the open position. In others, where a piston in an expansion cylinder is driven by hot, expanding gases from a separate combustion chamber or heat exchanger, the exhaust valve is closed before the piston has completed its exhaust stroke, and pressure is allowed to build up in the expansion cylinder to a level corresponding to the pressure in the combustion chamber before the valve member is moved toward the open position.
Abstract:
A hybrid internal combustion engine having a cylinder, a piston disposed within the cylinder, said piston constructed and arranged to reciprocate within said cylinder, and a combustion chamber defined by the cylinder and the top of the piston. The hybrid internal combustion engine also includes an exhaust manifold and a heat exchanger is disposed within the exhaust manifold. A pump disposed between the heat exchanger and a fluid reservoir is provided to deliver fluid to from the reservoir to heat exchanger, whereby the fluid in the heat exchanger is heated and turned into high pressure gas (HPG) when the combustion gases are exhausted from the combustion chamber via the exhaust manifold. The resulting HPG may then be introduced into the combustion chamber to provide a HPG power stroke.
Abstract:
The invention relates to a method for improving an internal combustion engine using: a) on the one hand at least one cylinder (1) functioning as a low-pressure cylinder according to a two-stroke operation, and b) on the other hand, two cylinders (2, 3) functioning as high-pressure combustion cylinders according to a four-stroke operation, the capacity displacement of each of the cylinders (2, 3) being less than that of the low-pressure cylinder (1), the combustion cylinders (2, 3) delivering alternatively their combusted gases towards the low-pressure cylinder (1) for a second expansion of the combusted gases. The invention is characterized in that the total expansion rate, defined hereinabove, is increased by having intervene a portion of the capacity displacement of the high-pressure cylinders in the maximum expansion volume and this, without increasing the capacity displacement of said engine, or the compression ratio of the high-pressure cylinders, or the dead volume of the low-pressure cylinder, or the volume of the transfer channel of the combusted gases of the high-pressure cylinders towards the low-pressure cylinder.The invention also relates to an internal combustion engine for implementing this method having intervene a “90° crankshaft” and/or “a shifting of the cylinders”.
Abstract:
A split-cycle engine with disc valve includes a crankshaft, a power cylinder and a compression cylinder. A gas crossover passage interconnects the compression cylinder and the power cylinder. An air intake port circumscribes a periphery of the compression cylinder and defines an outer valve seat. An annular ring having a generally central opening is disposed between the compression cylinder and the air intake port and forms a washer valve for opening and closing the air intake port. A disc valve member is concentrically mounted over the central opening of the annular ring. The disc valve member includes a piston portion having a sidewall biased into engagement with the outer valve seat for controlling flow between the compression cylinder and the gas crossover passage.