Abstract:
Brushless motor is provided which includes an outer stator and an inner rotor having a plurality of permanent magnets. One or inner surface of the outer stator, opposed to the inner rotor, is covered with a cover formed of a magnetic material and in the shape of a cylinder of a small wall thickness. The magnetic cover has a plurality of slits inclined with respect to the rotational axis of the inner rotor. Magnetic portions formed or left between the slits of the cover are also inclined with respect to the rotational axis of the inner rotor. With such magnetic portions, boundaries between magnetic poles are virtually inclined with respect to the rotational axis of the inner rotor, so that undesired cogging torque of the motor can be minimized.
Abstract:
Provided is a drive system of a motor structured from a combined arrangement of a plurality of motors capable of reducing losses resulting from mechanical loss during the process of the driving force behind the motor being transmitted. This system has a plurality of motors mutually arranged adjacently, and a drive control unit of this motor, wherein the drive control unit drives the magnetic rotor by sending an excitation signal to at least one motor, and the magnetic rotors of the other motors are synchronously driven by the magnetic coupling with the magnetic field generated from the excitation driven magnetic rotor.
Abstract:
A rotor of a motor includes a cylindrical rotor shaft that is formed through plastic working. The shaft includes a positioning portion that is formed in an inner peripheral surface of the cylindrical shaft by the plastic working of the shaft. The positioning portion is detachably engageable with a securing member, which is insertable into the shaft in an axial direction of the shaft to position the shaft in a circumferential direction. When the positioning portion is engaged with the securing member, relative rotation between the shaft and the securing member is limited.
Abstract:
Disclosed is a multiphase brushless DC motor of a concentrated winding type having shunt connection, and a control circuit. The brushless DC motor includes a rotor made up of a permanent magnet with M number of poles, and a stator operating in K number of phases by means of windings wound on N number of teeth, wherein the plurality of windings having the same excitation phases wound on the teeth, are each maintained in shunt connection so as to improve driving torque and a rotational speed. A brushless DC motor includes a switching section having a plurality of upper switching devices and a plurality of lower switching devices connected with each other in series. Each of the windings is connected between a common joint between the upper and lower switching devices, and a common joint between a lower power supply voltage and a plurality of upper power supply voltages.
Abstract:
The DC brushless motor is capable of increasing an output power and reducing vibrations and noise. The DC brushless motor comprises: a magnet rotor, in which magnetic poles are polar-anisotropically oriented, wherein the magnetic poles are skewed with respect to an axial line of the magnet rotor.
Abstract:
The pump device comprises a first pump (10a) that may have its intake side inserted into the left ventricle (42) of the heart, while the delivery side is located in the aorta (40), and a second pump (10b) having its intake side arranged in the right atrium (43), whereas its delivery side is in the pulmonary artery (47). A common control unit drives both pumps in mutual dependance, the first pump (10a) taking the lead function, whereas the second pump (10b) pumps only about 90% of the volume flow of the first pump (10a). Pressure sensors at the pumps serve to determine the differential pressure between the intake side and the delivery side of a pump and to determine the volume flow. Both pumps are inserted into the heart without having to open the ventricles.
Abstract:
The brushless motor according to the present invention is small in overall height without deterioration of the rotational accuracy. One of a pair of bearings is interposed between the base plate and the rotor and located on the radially outside of the other one of the bearings. A plurality of receiving holes is formed on the base plate to correspond to the teeth of the stator core to provide an axially space for respectively accommodating coils wound around the stator core. Thus, in spite of the motor having such a small axial clearance between the base plate and the rotor, sufficient amount of winding of coil is ensured. The receiving holes are closed from the outside of the motor with a sheet member and an adhesive is filled therein for fixedly securing the coil of the stator. The adhesive further acts as a damper to absorb magnetic vibration generated at the stator.
Abstract:
In a spindle motor for a disc drive in which a rotatable body having a disc mounted thereon is rotatively driven by a motor, the rotatable body is rotatably supported on a support member through a ball bearing and a hydrodynamic fluid bearing, and a preload equal to or greater than an axial load of 1N is imparted to the ball bearing.
Abstract:
A micro motor is manufactured by slipping the parts (24a, 24b) of a stator (24) on the mandrel (60) which is placed into an injection mold (50). The motor housing is made by injecting polymer material (63), the stator parts (24a, 24b) being encapsulated in the housing. During injection, a bearing (27) is contained in the injection mold (50). Subsequently, the mandrel (60) is drawn from the stator and a prepared rotor is inserted. Thus, a cost effective and high-precision manufacture of an electric motor with very small dimensions is made possible.
Abstract:
A spindle motor having a simplified construction with reduced axial and radial deflection while avoiding the half whirl phenomenon includes a motor frame, a rotating shaft supporting a rotor, a stator and stator coil, a permanent magnet opposing the stator, and a liquid dynamic pressure bearing. Magnetic centers of the permanent magnet and stator coil, in the axial direction of the rotating shaft, are substantially matched. The liquid dynamic pressure bearing comprises opposing surfaces of the rotating shaft and the housing. The rotating shaft has a disk-shaped thrust bearing portion disposed in a first portion of a cylindrical hole of the housing, and a radial bearing portion disposed in a second portion of the cylindrical hole. Lubricating oil fills a space between the cylindrical hole and the thrust bearing portion and radial bearing portion, and a presser ring is pressed and fixed into a third portion of the cylindrical hole to seal the bearing. A boss portion of the rotor is fixed to a rotor supporting portion of the rotating shaft so that an inner peripheral surface of the boss portion mates with an outer peripheral surface of the rotor supporting portion. The rotating shaft has three axially-spaced portions, with the disk-shaped thrust bearing portion formed between and having a larger diameter than the other portions. A stage is provided between the thrust bearing portion and the rotor supporting portion to serve as a seat for installation of the boss portion.