Abstract:
A method determines an alcohol content of liquids that contain at least water and alcohol as well as sugar or similar substances, in the liquid. The liquid is located in an analysis cell is irradiated by an IR-LED light source, which emits infrared radiation with λ=1000-1500 nm. The IR light absorption is measured at least two different wavelengths, and the measurement values are converted into data on the alcohol content of the liquid. The liquid is irradiated with a first IR radiation with a wavelength λ1, where the absorption coefficient of the alcohol, and the absorption coefficient of the water, are identical in magnitude, and with at least a second IR radiation with a wavelength λ2, where the absorption coefficients and are different. The absorption measurement values determined by an IR detector are applied to a calculating unit for the calculation of the alcohol content.
Abstract:
A method and system is described for rapidly classifying a sample of a biological fluid, comprising obtaining a spectrum of the biological fluid in response to excitation of the sample in a specified frequency range, and applying a multivariate classifier to one or more spectral regions of the spectrum to classify the biological sample into one class in a set of classes, the classes comprising at least two disease states having similar clinical symptoms. Methods and systems for developing the classifiers are also described. In one example the classification uses a vibrational spectrometer (5) to provide spectra from serum. The multivariate classifier may run on processor (9) to distinguish between disease states having similar clinical symptoms, such as malaria and cerebral malaria.
Abstract:
The present invention relates generally to non-invasive methods and apparatuses for determining analyte properties of a subject and identity characteristics of a subject. Embodiments of the present invention provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely that in systems that include separate analyte and identity determinations. The invention can be used to prevent operation of automobiles or other equipment unless the operator has an acceptable alcohol concentration, and to limit operation of automobiles or other equipment to authorized individuals who are not intoxicated or drug-impaired.
Abstract:
An integrated circuit device (for example, a logic device or a memory device (such as, a discrete memory device)), including a memory cell array having a plurality of memory cells arranged in a matrix of rows and columns, multiplexer circuitry, coupled to the memory cell array, wherein the multiplexer circuitry includes a plurality of data multiplexers, each data multiplexer having a plurality of inputs, including (i) a first input to receive write data which is representative of data to be written into the memory cells of the memory cell array in response to a write operation, and (ii) a second input to receive read data which is representative of data read from memory cells of the memory cell array, and an associated output to responsively output data from one of the plurality of inputs, and syndrome generation circuitry, coupled to the multiplexer circuitry, to generate: (i) a write data syndrome vector using the write data and (ii) a read data syndrome vector using the read data.
Abstract:
A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
Abstract:
The disclosure, in one aspect, provides a method for providing an image of a fluid that includes passing light through the fluid, detecting light passing through the fluid at at least one wavelength and producing signals corresponding to the detected light, and processing the signals to provide the image of the fluid.
Abstract:
Reliable and rapid diagnostic methods for many functional syndromes (FS) such as Bladder Pain Syndrome/Interstitial Cystitis (IC) are not available. Exemplary embodiments include rapid and accurate methods for diagnosing FS in humans and domestic cats using infrared microspectroscopy (IRMS). Exemplary methods utilize Soft Independent Modeling by Class Analogy (SIMCA) to create classification models. Exemplary methods utilize classification models to classify a test subject's condition (e.g., healthy/sick). Using these classification models, various embodiments enable diagnosis based on spectra data from a fluid biomedical specimen. Exemplary embodiments may be useful to rapidly diagnose IC and various other conditions in humans, cats, and/or other mammals.
Abstract:
A method of non-destructively determining the physical property of a material surface, the method including irradiating a surface with infrared energy over a spectrum of wavelengths; detecting said infrared energy reflected from said surface over said spectrum of wavelengths; performing multivariate calibration of said reflected infrared energy at a plurality of selected wavelengths including said spectrum of wavelengths; using results of said multivariate calibration to predict one or more physical properties of said model material; and, determining said one or more physical properties of said surface. Details are included for the case where uni-directional fiber CFRP materials are to be calibrated and predicted because special care must be taken for that material to insure the incident light from the spectrometer is at the proper orientation for calibration and for prediction of samples in question.
Abstract:
A new strategy for the quantitative determination of enantiomeric purity that combines guest-host complexation, spectroscopy, and chemometric modeling. Spectral data for samples of known enantiomeric composition is subjected to a type of multivariate regression modeling known as partial least squares (“PLS-1”) regression. The PLS-1 regression produces a mathematical model that can be used to predict the enantiomeric composition of a set of samples of unknown enantiomeric purity. In this strategy, the concentration of the chiral compound does not have to be fixed or known.
Abstract:
A method of quantitatively analysing a sample, the method comprising: irradiating the sample with radiation having a plurality of frequencies in the range from 25 GHz to 100 THz; detecting radiation reflected from and/or transmitted by said sample to obtain a frequency domain waveform of said sample; identifying at least one section of interest of said frequency domain wave-form containing spectral features due to intermolecular or other non-intramolecular excitations; and obtaining a value related to the concentration of a component of the sample from the said section.