Abstract:
Infrared radiation emitter units for gas analyzers and other applications. The emitter has a substrate with a film of electrically resistive, emissive material on one of its surfaces. The emitter is so mounted on an emitter unit base that it can freely expand as the emitter heats up. A lead frame commutator, employed to electrically connect the emitter to an external power source, also facilitates the assembly of the unit. A component with a plated, parabolic surface collimates and focuses into an appropriate beam the energy generated by the emitter.
Abstract:
The invention relates to a device for multichannel analog detection of a signal to be detected having a very good signal/noise ratio. It incorporates a modulator (53) producing a modulated signal S(P); means of synchronous attenuation (54) of variable phase .PHI. producing an attenuated modulated signal; a multipoint receiver (52) receiving the modulated-attenuated signal and producing for each point a primary analog signal; an integrator producing for each point a value V(P,.PHI.) resulting from the integration over N periods of the primary analog signal; means of reading, of digitizing and of storing the values V(P,.PHI.) for a given .PHI. value; a phase sequencer giving .PHI. the values .PHI..sub.0 +i2.pi./n successively where i is an integer varying from 1 to n; a digital processing unit making it possible to obtain data representative of S(P) from the values V(P,.PHI.). It is particularly well adapted to the detection of a luminous flux with an array of photodiodes.
Abstract:
The invention relates to a spectrometry installation comprising an inlet, optical fiber means suitable for receiving an inlet beam and delivering a spectrally dispersed image of the beam which image is limited to a selected spectral band, a multi-channel detection module receiving said spectral image, and processor means. The optical filter means are provided with a deflector stage. Control means are associated with the optical deflector means to define the spectral band in terms of center frequency and band width, and control means are associated therewith for displacing the spectral image over the detection module. An electronic control unit is provided to control the control means and to control the processor means in a plurality of operating modes, each of which comprises joint control of the selected spectral band, of the displacement of the spectral image, and of the processor means, for the purpose of selectively using a particular set of detector components.
Abstract:
The multicolor focal plane array of this invention detects and distinguishes between incoming electromagnetic radiation within a first band of wavelengths and incoming electromagnetic radiation within a second band of wavelengths which includes the first wavelength band. The array includes a substrate and a two dimensional array of detectors disposed on the substrate and responsive to electromagnetic radiation within a predetermined range of wavelengths including the first and second wavelength bands. A first thin film filter is disposed on the substrate and interposed between the incoming radiation and a subset of the detectors in the array to prevent radiation outside of the first wavlength band from reaching the detectors. A second thin film filter is disposed on the substrate and interposed between the incoming radiation and all of the detectors in the array to prevent radiation outside of the second wavelength band from reaching the detectors in the subset. The filter design uses a double optimized approach that effectively reduces the thickness of the multilayer stack requiring lithographic patterning. A thickness of less than five microns is achieved which enables the use of a multilayer resist lift-off method. The detectors in the subset are thus made sensitive to wavelengths within the first wavelength band, while the remaining detectors are sensitive to wavelengths within both the first and second wavelength bands.
Abstract:
Each of three or more telescopic filters in pairs of filters and detectors therefor has very narrow passband lines centered about laser wavelengths and nearby guardbands. As defined, a passband is any wavelength region of the spectrum permitted by a system to pass through to a detector, and a guardband is a spectral region near but not including the laser lines of interest. Each laser wavelength is simultaneously detected in exactly two detectors. Associated with each wavelength is a guardband near that wavelength, which is used to detect and reject broader band radiation. False alarms are made rare by proper parameter selection.
Abstract:
A compact, self contained image resolving and sensing apparatus of the type used in electronic imaging applications includes a plurality of sensing devices such as photodetectors formed on a transparent substrate capable of resolving a polychromatic image incident thereupon. The mechanism by which the substrate resolves the incident image may be refraction, diffraction or other suitable mechanism. The sensing devices are sized and located on the substrate such that they are capable of detecting one or more wavelength components of the resolved polychromatic image. Logic and select circuitry may be formed on the substrate generally contemporaneously and of similar materials as the sensing device.
Abstract:
A method of correcting for background changes in a plasma emission detector comprising a photodetector array is disclosed. In the photodetector array a plurality of sensors are used to detect the emission lines from a discrete number of selected elements including carbon. It is shown that, to the first order, there is a correlation between the response at detectors other than the carbon detector with the response at a carbon detector. The exact extent of this correlation is highly dependent on the amount of nitrogen present in the carrier gas used in the system. A calibration curve can be generated which allows compensation at a frequency of interest as a function of the magnitude of the carbon signal. This curve will depend on the level of nitrogen in the carrier gas and can be empirically determined each time a new bottle of gas is connected to the system. In a preferred embodiment, the calibration curve is not referred to unitl the carbon response reaches a preselected threshold value corresponding to the point on the calibration curve where there is a measurable spurious reading.
Abstract:
An arrangement for high resolution spectroscopy includes a spatially or chronologically tunable interference filter with a wavelength selective diode array composed of a plurality of diode elements arranged side-by-side.
Abstract:
A multi-element optical detector having a planar array of detector elements is focused at the focal plane of an optical spectrometer by placing the detector with the detecting surface of the array facing the optical spectrometer and being substantially perpendicular to the axis of the path of the light from the optical spectra to the focal plane. Relative movement is provided between the detector and the focal plane along said axis so that the detector array is placed at several different positions with respect to the focal plane. At each position the output values of the detector elements of the array are measured and the second difference of the output values is determined by the equation (-F1+2.times.F2-F3), where F1, F2, and F3 are the output values of three of the elements. The optical detector is placed at the position which provides the maximum value of the second difference, which is the position of the focal plane.
Abstract:
A measuring apparatus includes a freely moving measuring head which is connected to a stationary base unit via light conductors and an electrical cable. The radiation reflected from the sample is simultaneously measured at three different angles. For this purpose, three diode-array spectrometers are provided in the stationary base unit. The spectrum of the radiation illuminating the sample can be simultaneously measured with a fourth diode-array spectrometer.